Mostrar el registro sencillo del ítem

dc.contributor.authorDison S.P., Francospa
dc.contributor.authorgeorgin, jordanaspa
dc.contributor.authorSchadeck Netto, Matiasspa
dc.contributor.authorMontagner, Vinicius Folettospa
dc.contributor.authorAllasia, Danielspa
dc.contributor.authorSilva Oliveira, Marcos Leandrospa
dc.contributor.authorPinto, Dianaspa
dc.contributor.authorDotto, Guilherme Luizspa
dc.date.accessioned2022-06-10T16:40:34Z
dc.date.available2023
dc.date.available2022-06-10T16:40:34Z
dc.date.issued2022
dc.identifier.citationFranco, D.S.P., Georgin, J., Netto, M.S. et al. Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk. Environ Sci Pollut Res 29, 31085–31098 (2022). https://doi.org/10.1007/s11356-021-17846-zspa
dc.identifier.issn0944-1344spa
dc.identifier.urihttps://hdl.handle.net/11323/9234spa
dc.description.abstractIn this work, buckwheat husks (Fagopyrum esculentum) were modified by acid treatment and posteriorly employed to remove the ketoprofen in batch adsorption. The characterization results indicated that a more irregular surface with new empty spaces was generated after acid treatment. The adsorptive process was favored at acidic pH = 3. The dosage of 0.85 g L−1 was fixed for the kinetic and isothermal tests, obtaining good removal and capacity indications. The kinetic studies were better represented by pseudo-second-order, obtaining an experimental capacity of 74.3 mg g−1 for 200 mg L−1 of ketoprofen. An increase in temperature negatively affected the adsorption isotherm curves, resulting in a maximum capacity of 194.1 mg g−1. Thermodynamic results confirmed the exothermic nature of the process with physical forces acting. The adsorbent presented high efficiency in treating a synthetic effluent containing different drugs and salts, 71.2%. Therefore, adsorbent development from buckwheat husks treated with a strong acid is an excellent alternative, given the good removal results and the low cost for its preparation.eng
dc.format.extent1 páginaspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherSpringer Science + Business Mediaspa
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.rights© 2022 Springer Nature Switzerland AG. Part of Springer Nature.spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.titleEffective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum huskeng
dc.typeArtículo de revistaspa
dc.source.urlhttps://link.springer.com/article/10.1007/s11356-021-17846-zspa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.identifier.doi10.1007/s11356-021-17846-zspa
dc.identifier.eissn1614-7499spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeGermanyspa
dc.relation.ispartofjournalEnvironmental Science and Pollution Researchspa
dc.relation.referencesAdebisi GA, Chowdhury ZZ, Alaba PA (2017) Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. J Clean Prod 148:958–968. https://doi.org/10.1016/j.jclepro.2017.02.047spa
dc.relation.referencesAli AMA, El-Nour MEAM, Yagi SM (2018) Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. J Genet Eng Biotechnol 16:677–682. https://doi.org/10.1016/j.jgeb.2018.03.003spa
dc.relation.referencesAli I, Al-Othman ZA, Alwarthan A (2016) Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. J Mol Liq 219:858–864. https://doi.org/10.1016/j.molliq.2016.04.031spa
dc.relation.referencesAli I, Burakov AE, Melezhik AV et al (2019) Removal of copper(II) and zinc(II) ions in water on a newly synthesized polyhydroquinone/graphene nanocomposite material: kinetics, thermodynamics and mechanism. Chem Select 4:12708–12718. https://doi.org/10.1002/slct.201902657spa
dc.relation.referencesAl-Othman ZA, Badjah AY, Alduhaish OM et al (2021) Synthesis, characterization, kinetics and modeling studies of new generation pollutant ketoprofen removal in water using copper nanoparticles. J Mol Liq 323:115075. https://doi.org/10.1016/j.molliq.2020.115075spa
dc.relation.referencesAubert L, Konrádová D, Kebbas S et al (2020) Comparison of high temperature resistance in two buckwheat species Fagopyrum esculentum and Fagopyrum tataricum. J Plant Physiol 251:153222. https://doi.org/10.1016/j.jplph.2020.153222spa
dc.relation.referencesBaccar R, Sarrà M, Bouzid J et al (2012) Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem Eng J 211–212:310–317. https://doi.org/10.1016/j.cej.2012.09.099spa
dc.relation.referencesBarpanda P, Fanchini G, Amatucci GG (2011) Structure, surface morphology and electrochemical properties of brominated activated carbons. Carbon N Y 49:2538–2548. https://doi.org/10.1016/j.carbon.2011.02.028spa
dc.relation.referencesBonilla-Petriciolet A, Mendoza-Castillo DI, Reynel-Avila HE (2017) Adsorption processes for water treatment and purification. Springer International Publishing, Chamspa
dc.relation.referencesChrista K, Soral-Śmietana M (2008) Buckwheat grains and buckwheat products - nutritional and prophylactic value of their components - a review. Czech J Food Sci 26:153–162. https://doi.org/10.17221/1602-cjfsspa
dc.relation.referencesCuerda-Correa EM, Domínguez-Vargas JR, Olivares-Marín FJ, de Heredia JB (2010) On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water. J Hazard Mater 177:1046–1053. https://doi.org/10.1016/j.jhazmat.2010.01.026spa
dc.relation.referencesCui Y, Masud A, Aich N, Atkinson JD (2019) Phenol and Cr(VI) removal using materials derived from harmful algal bloom biomass: characterization and performance assessment for a biosorbent, a porous carbon, and Fe/C composites. J Hazard Mater 368:477–486. https://doi.org/10.1016/j.jhazmat.2019.01.075spa
dc.relation.referencesDahane S, Gil García MD, Martínez Bueno MJ et al (2013) Determination of drugs in river and wastewaters using solid-phase extraction by packed multi-walled carbon nanotubes and liquid chromatography-quadrupole-linear ion trap-mass spectrometry. J Chromatogr A 1297:17–28. https://doi.org/10.1016/j.chroma.2013.05.002spa
dc.relation.referencesDe Oliveira GF, De Andrade RC, Trindade MAG et al (2017) Thermogravimetric and spectroscopic study (Tg-DTA/FT-IR) of activated carbon from the renewable biomass source babassu. Quim Nova 40:284–292. https://doi.org/10.21577/0100-4042.20160191spa
dc.relation.referencesDo DD (1998) Adsorption analysis: equilibria and kinetics. Vol 1, Imperial College Press, London, 913 p.spa
dc.relation.referencesDubinin MM, Astakhov VA (1971) Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents. Bull Acad Sci USSR Div Chem Sci 20:3–7. https://doi.org/10.1007/BF00849307spa
dc.relation.referencesEbele AJ, Abou-Elwafa Abdallah M, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3:1–16. https://doi.org/10.1016/j.emcon.2016.12.004spa
dc.relation.referencesEssandoh M, Wolgemuth D, Pittman CU, et al. (2017) Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere 174:49–57. https://doi.org/10.1016/j.chemosphere.2017.01.105spa
dc.relation.referencesFerreira LS, Rodrigues MS, de Carvalho JCM et al (2011) Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chem Eng J 173:326–333. https://doi.org/10.1016/j.cej.2011.07.039spa
dc.relation.referencesFreundlich H (1907) Über die Adsorption in Lösungen. Z Phys Chem 57Uhttps://doi.org/10.1515/zpch-1907-5723spa
dc.relation.referencesFröhlich AC, Foletto EL, Dotto GL (2019) Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions. J Clean Prod 229:828–837. https://doi.org/10.1016/j.jclepro.2019.05.037spa
dc.relation.referencesGeorgin J, Franco DSP, Schadeck Netto M et al (2021) Transforming shrub waste into a high-efficiency adsorbent: application of Physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide. J Environ Chem Eng 9:104574. https://doi.org/10.1016/j.jece.2020.104574spa
dc.relation.referencesGiles CH, D’Silva AP, Easton IA (1974) A general treatment and classification of the solute adsorption isotherm part. II. Experimental interpretation. J Colloid Interface Sci 47:766–778. https://doi.org/10.1016/0021-9797(74)90253-7spa
dc.relation.referencesGiles CH, Smith D (1974) A general treatment and classification of the solute adsorption isotherm part I. Theoretical. J Colloid Interface Sci 47:755–765. https://doi.org/10.1016/0021-9797(74)90252-5spa
dc.relation.referencesGlueckauf E (1955) Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography. Trans Faraday Soc 51:1540–1551. https://doi.org/10.1039/TF9555101540spa
dc.relation.referencesGómez-Avilés A, Sellaoui L, Badawi M, et al (2021) Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modelling. ChemEng J 404https://doi.org/10.1016/j.cej.2020.126601spa
dc.relation.referencesGulpinar AR, Erdogan Orhan I, Kan A et al (2012) Estimation of in vitro neuroprotective properties and quantification of rutin and fatty acids in buckwheat (Fagopyrum esculentum Moench) cultivated in Turkey. Food Res Int 46:536–543. https://doi.org/10.1016/j.foodres.2011.08.011spa
dc.relation.referencesHamed MM, Ali MMS, Holiel M (2016) Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: equilibrium, kinetic and thermodynamic studies. J Environ Radioact 164:113–124. https://doi.org/10.1016/j.jenvrad.2016.07.005spa
dc.relation.referencesHo YS, McKay G (2002) Application of kinetic models to the sorption of copper (II) on to peat. Adsorpt Sci Technol 20:797–815. https://doi.org/10.1260/026361702321104282spa
dc.relation.referencesJawad AH, Rashid RA, Ishak MAM, Ismail K (2018) Adsorptive removal of methylene blue by chemically treated cellulosic waste banana ( Musa sapientum ) peels. J Taibah Univ Sci 12:809–819. https://doi.org/10.1080/16583655.2018.1519893spa
dc.relation.referencesJawad AH, Razuan R, Appaturi JN, Wilson LD (2019) Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus)rind prepared via one-step liquid phase H 2 SO 4 activation. Surf Interfaces 16:76–84. https://doi.org/10.1016/j.surfin.2019.04.012spa
dc.relation.referencesJózwiak T, Filipkowska U, Kowalkowska A et al (2021) The influence of amination of sorbent based on buckwheat (Fagopyrum esculentum) husks on the sorption effectiveness of Reactive Black 5 dye. J Environ Chem Eng 9:105092. https://doi.org/10.1016/j.jece.2021.105092spa
dc.relation.referencesKermia AEB, Fouial-Djebbar D, Trari M (2016) Occurrence, fate and removal efficiencies of pharmaceuticals in wastewater treatment plants (WWTPs) discharging in the coastal environment of Algiers. C R Chim 19:963–970. https://doi.org/10.1016/j.crci.2016.05.005spa
dc.relation.referencesKibami D (2018) Kinetics and adsorption studies of lead (II) onto activated carbon using low-cost adsorbents. Globalnest J 20:381–388. https://doi.org/10.30955/gnj.002532spa
dc.relation.referencesKosjek T, Heath E, Krbavčič A (2005) Determination of non-steroidal anti-inflammatory drug (NSAIDs) residues in water samples. Environ Int 31:679–685. https://doi.org/10.1016/j.envint.2004.12.001spa
dc.relation.referencesLagergren SY (1898) Zur Theorie der sogenannten Adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24:1–39.spa
dc.relation.referencesLangmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004spa
dc.relation.referencesLi K, Zhang Y, Dang Y et al (2014) Removal of Cr(VI) from aqueous solutions using buckwheat (Fagopyrum esculentum Moench) hull through adsorption-reduction: affecting factors, isotherm, and mechanisms. Clean Soil Air Water 42:1549–1557. https://doi.org/10.1002/clen.201300399spa
dc.relation.referencesLi Y, Du Q, Liu T et al (2013) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem Eng Res Des 91:361–368. https://doi.org/10.1016/j.cherd.2012.07.007spa
dc.relation.referencesLima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048spa
dc.relation.referencesLiu Y, Shen L (2008) A general rate law equation for biosorption. Biochem 38:390–394. https://doi.org/10.1016/j.bej.2007.08.003spa
dc.relation.referencesLiu Y, Wang W, Huang H et al (2014) The highly enhanced performance of lamellar WS2 nanosheet electrodes upon intercalation of single-walled carbon nanotubes for supercapacitors and lithium ions batteries. Chem Commun 50:4485–4488. https://doi.org/10.1039/c4cc01622jspa
dc.relation.referencesLua AC, Yang T, Guo J (2004) Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J Anal Appl Pyrolysis 72:279–287. https://doi.org/10.1016/j.jaap.2004.08.001spa
dc.relation.referencesLütke SF, Igansi AV, Pegoraro L et al (2019) Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J Environ Chem Eng 7:103396. https://doi.org/10.1016/j.jece.2019.103396spa
dc.relation.referencesMadikizela LM, Tavengwa NT, Chimuka L (2017) Status of pharmaceuticals in African water bodies: occurrence, removal and analytical methods. J Environ Manage 193:211–220. https://doi.org/10.1016/j.jenvman.2017.02.022spa
dc.relation.referencesMaldonado-Torres S, Gurung R, Rijal H et al (2018) Fate, transformation, and toxicological impacts of pharmaceutical and personal care products in surface waters. Environ Health Insights 12:1–4. https://doi.org/10.1177/1178630218795836spa
dc.relation.referencesMashayekh-Salehi A, Moussavi G (2016) Removal of acetaminophen from the contaminated water using adsorption onto carbon activated with NH4Cl. Desalin Water Treat 57:12861–12873. https://doi.org/10.1080/19443994.2015.1051588spa
dc.relation.referencesMlunguza NY, Ncube S, Nokwethemba Mahlambi P et al (2019) Adsorbents and removal strategies of non-steroidal anti-inflammatory drugs from contaminated water bodies. J Environ Chem Eng 7:103142. https://doi.org/10.1016/j.jece.2019.103142spa
dc.relation.referencesMoreno-Pérez J, Pauletto PS, Cunha AM, et al (2021) Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/biochar composite. Colloids Surfaces A PhysicochemEng Asp 614https://doi.org/10.1016/j.colsurfa.2021.126170spa
dc.relation.referencesNakbi A, Bouzid M, Ayachi F et al (2019) Investigation of caffeine taste mechanism through a statistical physics modeling of caffeine dose-taste response curve by a biological putative caffeine adsorption process in electrophysiological response. Prog Biophys Mol Biol 149:70–85. https://doi.org/10.1016/j.pbiomolbio.2018.12.013spa
dc.relation.referencesNakbi A, Bouzid M, Ayachi F et al (2020) Quantitative characterization of sucrose taste by statistical physics modeling parameters using an analogy between an experimental physicochemical isotherm of sucrose adsorption on β-cyclodextrin and a putative biological sucrose adsorption from sucrose. J Mol Liq 298:111950. https://doi.org/10.1016/j.molliq.2019.111950spa
dc.relation.referencesNiazi NK, Bibi I, Shahid M et al (2018) Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: investigating arsenic fate using integrated spectroscopic and microscopic techniques. Sci Total Environ 621:1642–1651. https://doi.org/10.1016/j.scitotenv.2017.10.063spa
dc.relation.referencesOuasfi N, Zbair M, Bouzikri S et al (2019) Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights. RSC Adv 9:9792–9808. https://doi.org/10.1039/C9RA01086Fspa
dc.relation.referencesPang X, Sellaoui L, Franco D et al (2019) Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models. Chem Eng J 378:122101. https://doi.org/10.1016/j.cej.2019.122101spa
dc.relation.referencesPatrolecco L, Ademollo N, Grenni P et al (2013) Simultaneous determination of human pharmaceuticals in water samples by solid phase extraction and HPLC with UV-fluorescence detection. Microchem J 107:165–171. https://doi.org/10.1016/j.microc.2012.05.035spa
dc.relation.referencesPeñafiel ME, Matesanz JM, Vanegas E, et al. (2021) Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon. Sci Total Environ 750https://doi.org/10.1016/j.scitotenv.2020.141498spa
dc.relation.referencesPeng LX, Zou L, Tan ML et al (2017) Free amino acids, fatty acids, and phenolic compounds in tartary buckwheat of different hull colour. Czech J Food Sci 35:214–222. https://doi.org/10.17221/185/2016-CJFSspa
dc.relation.referencesPereira MFR, Soares SF, Órfão JJM, Figueiredo JL (2003) Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon N Y 41:811–821. https://doi.org/10.1016/S0008-6223(02)00406-2spa
dc.relation.referencesSantos JL, Aparicio I, Alonso E, Callejón M (2005) Simultaneous determination of pharmaceutically active compounds in wastewater samples by solid phase extraction and high-performance liquid chromatography with diode array and fluorescence detectors. Anal Chim Acta 550:116–122. https://doi.org/10.1016/j.aca.2005.06.064spa
dc.relation.referencesSarker M, Song JY, Jhung SH (2018) Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chem Eng J 335:74–81. https://doi.org/10.1016/j.cej.2017.10.138spa
dc.relation.referencesSellaoui L, Depci T, Kul AR et al (2016) A new statistical physics model to interpret the binary adsorption isotherms of lead and zinc on activated carbon. J Mol Liq 214:220–230. https://doi.org/10.1016/j.molliq.2015.12.080spa
dc.relation.referencesSellaoui L, Guedidi H, Sarrawjihi et al (2016) Experimental and theoretical studies of adsorption of ibuprofen on raw and two chemically modified activated carbons: New physicochemical interpretations. RSC Adv 6:12363–12373. https://doi.org/10.1039/c5ra22302dspa
dc.relation.referencesSmall E (2017) 54. Buckwheat–the world’s most biodiversity-friendly crop? Biodiversity 18:108–123. https://doi.org/10.1080/14888386.2017.1332529spa
dc.relation.referencesSpessato L, Bedin KC, Cazetta AL et al (2019) KOH-super activated carbon from biomass waste: insights into the paracetamol adsorption mechanism and thermal regeneration cycles. J Hazard Mater 371:499–505. https://doi.org/10.1016/j.jhazmat.2019.02.102spa
dc.relation.referencesStreit AFM, Collazzo GC, Druzian SP et al (2020) Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128322spa
dc.relation.referencesTemkin M, Pyzhev V (1939) Kinetics of the synthesis of ammonia on promoted iron catalysts. J Phys Chem (USSR) 13:851–867spa
dc.relation.referencesThue PS, Umpierres CS, Lima EC, et al. (2020) Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol. J Hazard Mater 398:122903 https://doi.org/10.1016/j.jhazmat.2020.122903spa
dc.relation.referencesVan Tran T, Nguyen DTC, Le HTN et al (2020) Optimization, equilibrium, adsorption behavior and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug. J Environ Sci (China) 93:137–150. https://doi.org/10.1016/j.jes.2020.02.007spa
dc.relation.referencesWoo SH, Roy SK, Kwon SJ, et al (2016) Concepts, prospects, and potentiality in buckwheat (Fagopyrum esculentum Moench): a research perspective. Molecular Breeding and Nutritional Aspects of Buckwheat 21–49. https://doi.org/10.1016/B978-0-12-803692-1.00003-1spa
dc.relation.referencesWu FC, Wu PH, Tseng RL, Juang RS (2011) Preparation of novel activated carbons from H2SO4-pretreated corncob hulls with KOH activation for quick adsorption of dye and 4-chlorophenol. J Environ Manage 92:708–713. https://doi.org/10.1016/j.jenvman.2010.10.003spa
dc.relation.referencesYao N, Li C, Yu J et al (2020) Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water. Sep Purif Technol 236:116278. https://doi.org/10.1016/j.seppur.2019.116278spa
dc.relation.referencesYu S, Park J, Kim M et al (2019) Characterization of biochar and byproducts from slow pyrolysis of hinoki cypress. Bioresour Technol Rep 6:217–222. https://doi.org/10.1016/j.biteb.2019.03.009spa
dc.relation.referencesZavalloni C, Alberti G, Biasiol S et al (2011) Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study. Appl Soil Ecol 50:45–51. https://doi.org/10.1016/j.apsoil.2011.07.012spa
dc.relation.referencesZenker A, Cicero MR, Prestinaci F et al (2014) Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J Environ Manage 133:378–387. https://doi.org/10.1016/j.jenvman.2013.12.017spa
dc.relation.referencesZhao B, O’Connor D, Zhang J et al (2018) Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod 174:977–987. https://doi.org/10.1016/j.jclepro.2017.11.013spa
dc.subject.proposalFagopyrum esculentumeng
dc.subject.proposalBuckwheateng
dc.subject.proposalHuskeng
dc.subject.proposalKetoprofeneng
dc.subject.proposalDrugeng
dc.subject.proposalAdsorptioneng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/draftspa
dc.relation.citationendpage31098spa
dc.relation.citationstartpage31085spa
dc.relation.citationissue21spa
dc.relation.citationvolume29spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cfspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional (CC BY 4.0)