Mostrar el registro sencillo del ítem

dc.contributor.authorEscorcia-Gutierrez, Josespa
dc.contributor.authorGamarra, Margaritaspa
dc.contributor.authorBELEÑO SAENZ, KELVINspa
dc.contributor.authorSoto, Carlosspa
dc.contributor.authorMansour, Romanyspa
dc.date.accessioned2022-07-05T14:30:18Z
dc.date.available2024
dc.date.available2022-07-05T14:30:18Z
dc.date.issued2022
dc.identifier.citationJosé Escorcia-Gutierrez, Margarita Gamarra, Kelvin Beleño, Carlos Soto, Romany F. Mansour, Intelligent deep learning-enabled autonomous small ship detection and classification model, Computers and Electrical Engineering, Volume 100, 2022, 107871, ISSN 0045-7906, https://doi.org/10.1016/j.compeleceng.2022.107871.spa
dc.identifier.issn0045-7906spa
dc.identifier.urihttps://hdl.handle.net/11323/9333spa
dc.description.abstractAutonomous ship technologies have gained considerable interest due to the minimization of the challenging issues faced by the unpredictable errors of manual navigation, and therefore reduces human labor, increasing navigation security and profit margin. On autonomous shipping technologies, small ship detection is vital in ensuring shipping safety. With this motivation, this paper presents an efficient optimal mask regional convolutional neural network (Mask-CNN) technique for small ship detection (OMRCNN-SHD) on autonomous shipping technologies. Primarily, the data augmentation process is performed to resolve the issue of the limited number of real-world samples of small ships and helps to detect small ships in most cases accurately. Besides, the Mask RCNN with SqueezeNet model is used to detect ships and the hyperparameter tuning of the SqueezeNet model takes place by the use of the Adagrad optimizer. Furthermore, the Colliding Body's Optimization (CBO) algorithm with the weighted regularized extreme learning machine (WRELM) technique is employed to classify detected ships effectively. The comparative results analysis demonstrates the betterment of the OMRCNN-SHD technique over the current methods with the maximum accuracy of 98.63%.eng
dc.format.extent13 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherElsevier Ltd.spa
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights© 2022 Elsevier Ltd. All rights reserved.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleIntelligent deep learning-enabled autonomous small ship detection and classification modeleng
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.1016/j.compeleceng.2022.107871spa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S0045790622001616#!spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.identifier.doi10.1016/j.compeleceng.2022.107871.spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeUnited Kingdomspa
dc.relation.ispartofjournalComputers and Electrical Engineeringspa
dc.relation.referencesChen Z, Chen D, Zhang Y, Cheng X, Zhang M, Wu C. Deep learning for autonomous ship-oriented small ship detection. Saf Sci 2020;130:104812.spa
dc.relation.referencesTran T, Le T. Vision based boat detection for maritime surveillance. In: International Conference on Electronics, Information, and Communications. IEEE; 2016. p. 1–4.spa
dc.relation.referencesWackerman CC, Friedman KS, Pichel WG, Clemente-Col ONP, Li X. Automatic detection of ships in RADARSAT-1 SAR imagery. Can J Remote Sens 2001;27(5): 568–77.spa
dc.relation.referencesWijnhoven R, van Rens K, Jaspers EG, de With PH. Online learning for ship detection in maritime surveillance. In: rocceedings of 31th Symposium on Information Theory in the Benelux; 2010. p. 73–80.spa
dc.relation.referencesYang X, Sun H, Fu K, Yang J, Sun X, Yan M, Guo Z. Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks. Remote Sens 2018;10(1):132.spa
dc.relation.referencesMansour R, Escorcia-Gutierrez J, Gamarra M, Villanueva J, Leal N. Intelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model. Image Vision Comput 2020;112:104229.spa
dc.relation.referencesZurek E, Gamarra M, Escorcia-Gutierrez J, Gutierrez C, Bayona H. A robust application in vessel recognition based on neural classification of acoustic fingerprint. Int J Artif Intell 2018;16(1):195–213.spa
dc.relation.referencesYao Y, Jiang Z, Zhang H, Zhao D, Cai B. Ship detection in optical remote sensing images based on deep convolutional neural networks. J Appl Remote Sens 2017; 11(4):042611.spa
dc.relation.referencesZhang X, Wang H, Xu C, Lv Y, Fu C, Xiao H, He Y. A lightweight feature optimizing network for ship detection in SAR image. IEEE Access 2019;7:141662–78.spa
dc.relation.referencesFan Q, Chen F, Cheng M, Lou S, Xiao R, Zhang B, Wang C, Li J. Ship detection using a fully convolutional network with compact polarimetric SAR images. Remote Sens 2019;11:2171.spa
dc.relation.referencesFu J, Sun X, Wang Z, Fu K. An anchor-free method based on feature balancing and refinement network for multiscale ship detection in SAR images. IEEE Trans Geosci Remote Sens 2020.spa
dc.relation.referencesFu J, Sun X, Wang Z, Fu K. An anchor-free method based on feature balancing and refinement network for multiscale ship detection in SAR images. IEEE Trans Geosci Remote Sens 2020.spa
dc.relation.referencesGuo H, Yang X, Wang N, Gao X. A CenterNet++ model for ship detection in SAR images. Pattern Recognit 021;112:107787.spa
dc.relation.referencesChen P, Li Y, Zhou H, Liu B, Liu P. Detection of small ship objects using anchor boxes cluster and feature pyramid network model for SAR imagery. J Mar Sci Eng 2020;8(2):112.spa
dc.relation.referencesNina W, Condori W, Machaca V, Villegas J, Castro E. Small ship detection on optical satellite imagery with YOLO and YOLT. In: Future of Information and Communication Conference. Cham: Springer; 2020. p. 664–77.spa
dc.relation.referencesJin K, Chen Y, Xu B, Yin J, Wang X, Yang J. A patch-to-pixel convolutional neural network for small ship detection with PolSAR Images. IEEE Trans Geosci Remote Sens 2020;58(9):6623–38.spa
dc.relation.referencesWang J, Lin Y, Guo J, Zhuang L. SSS-YOLO: towards more accurate detection for small ships in SAR image. Remote Sens Lett 2021;12(2):93–102.spa
dc.relation.referencesDevadharshini S, Kalaipriya R, Rajmohan R, Pavithra M, Ananthkumar T. Performance investigation of Hybrid YOLO-VGG16 based ship detection framework using SAR images. In: 2020 International Conference on System, Computation, Automation and Networking (ICSCAN). IEEE; 2020. p. 1–6.spa
dc.relation.referencesLiu Y, Cui HY, Kuang Z, Li GQ. Ship detection and classification on optical remote sensing images using deep learning. In: ITM Web of Conferences. EDP Sciences; 2017. p. 05012. Vol. 12.spa
dc.relation.referencesYu Y, Zhang K, Yang L, Zhang D. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN. Comput Electron Agric 2019;163:104846.spa
dc.relation.referencesXu Y, Yang G, Luo J, He J. An Electronic component recognition algorithm based on deep learning with a faster queezeNet. Math Probl Eng 2020:2020.spa
dc.relation.referencesZhang C, Yao M, Chen W, Zhang S, Chen D, Wu Y. Gradient descent optimization in deep learning model training based on multistage and method combination strategy. In: Security and Communication Networks; 2021. p. 2021.spa
dc.relation.referencesWang Y, Zhou G. The novel successive variational mode decomposition and weighted regularized extreme learning machine for fault diagnosis of automobile gearbox. Shock Vib 2021:2021.spa
dc.relation.referencesKaveh A, Mahdavi VR. Colliding bodies optimization: a novel meta-heuristic method. Comput Struct 2014;139:18–27. J. Escorcia-Gutierrez et al.spa
dc.subject.proposalAutonomous systemseng
dc.subject.proposalArtificial intelligenceeng
dc.subject.proposalShip detectioneng
dc.subject.proposalDeep learningeng
dc.subject.proposalMask RCNNeng
dc.subject.proposalParameter optimizationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationendpage13spa
dc.relation.citationstartpage1spa
dc.relation.citationissue107871spa
dc.relation.citationvolume100spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cfspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3156]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)