Mostrar el registro sencillo del ítem

dc.contributor.authorHernandes, Paola Tspa
dc.contributor.authorPfingsten Franco, Dison Strackespa
dc.contributor.authorgeorgin, jordanaspa
dc.contributor.authorP. G. Salau, Ninaspa
dc.contributor.authorDotto, Guilherme Luizspa
dc.date.accessioned2022-07-07T13:23:23Z
dc.date.available2024
dc.date.available2022-07-07T13:23:23Z
dc.date.issued2022
dc.identifier.citationPaola T. Hernandes, Dison S.P. Franco, Jordana Georgin, Nina P.G. Salau, Guilherme L. Dotto, Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium, Journal of Environmental Chemical Engineering, Volume 10, Issue 3, 2022, 107408, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2022.107408.spa
dc.identifier.issn2213-3437spa
dc.identifier.urihttps://hdl.handle.net/11323/9339spa
dc.description.abstractBiochar was produced from the sawdust of the wood forest species Cedrella fissilis and later used as an adsorbent to remove atrazine herbicide from aqueous media. Biochar showed high thermal stability, an amorphous structure, and a highly irregular surface, mainly composed of carbon-containing bonds. The isothermal curves confirmed that the increase in temperature favored the adsorption of the herbicide. The Langmuir model best suited the experimental equilibrium data, with the maximum adsorption capacity of 7.68 mg g-1 at 328 K. The thermodynamic parameters confirmed a spontaneous process of an endothermic nature governed by physical interactions (interactions of van der Waals and hydrogen bonds). Kinetic studies showed that equilibrium was reached within 180 min. The linear driving force model (LDF) showed good statistical adjustment to the experimental data, where it was observed that the diffusion coefficient increased with the concentration of adsorbate. Biochar can be reused in up to three cycles. Finally, the adsorbent showed good efficiency in real water samples from rivers contaminated with atrazine, with 76.58% and 71.29% removal. © 2022 Elsevier Ltd.eng
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherElsevier BVspa
dc.rights© 2022 Elsevier Ltd. All rights reserved.spa
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleInvestigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous mediumeng
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.1016/j.jece.2022.107408.spa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S2213343722002810#!spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.identifier.doi10.1016/j.jece.2022.107408.spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeUnited Kingdomspa
dc.relation.ispartofjournalJournal of Environmental Chemical Engineeringspa
dc.relation.referencesHayes, T.B., Collins, A., Lee, M., Mendoza, M., Noriega, N., Stuart, A.A., Vonk, A. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses (2002) Proceedings of the National Academy of Sciences of the United States of America, 99 (8), pp. 5476-5480. Cited 888 times. www.pnas.org doi: 10.1073/pnas.082121499spa
dc.relation.referencesLasserre, J.-P., Fack, F., Revets, D., Planchon, S., Renaut, J., Hoffmann, L., Gutleb, A.C., (...), Bohn, T. Effects of the endocrine disruptors atrazine and PCB 153 on the protein expression of MCF-7 human cells (2009) Journal of Proteome Research, 8 (12), pp. 5485-5496. Cited 84 times. http://pubs.acs.org/doi/pdfplus/10.1021/pr900480f doi: 10.1021/pr900480fspa
dc.relation.referencesRostami, S., Jafari, S., Moeini, Z., Jaskulak, M., Keshtgar, L., Badeenezhad, A., Azhdarpoor, A., (...), Dehghani, M. Current methods and technologies for degradation of atrazine in contaminated soil and water: A review (2021) Environmental Technology and Innovation, 24, art. no. 102019. Cited 4 times. http://www.journals.elsevier.com/environmental-technology-and-innovation/ doi: 10.1016/j.eti.2021.102019spa
dc.relation.referencesShirmardi, M., Alavi, N., Lima, E.C., Takdastan, A., Mahvi, A.H., Babaei, A.A. Removal of atrazine as an organic micro-pollutant from aqueous solutions: a comparative study (2016) Process Safety and Environmental Protection, Part A 103, pp. 23-35. Cited 60 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/713889/description#description doi: 10.1016/j.psep.2016.06.014spa
dc.relation.referencesGraymore, M., Stagnitti, F., Allinson, G. Impacts of atrazine in aquatic ecosystems (2001) Environment International, 26 (7-8), pp. 483-495. Cited 448 times. www.elsevier.com/locate/envint doi: 10.1016/S0160-4120(01)00031-9spa
dc.relation.referencesStratton, G.W. Effects of the herbicide atrazine and its degradation products, alone and in combination, on phototrophic microorganisms (1984) Archives of Environmental Contamination and Toxicology, 13 (1), pp. 35-42. Cited 112 times. doi: 10.1007/BF01055644spa
dc.relation.referencesShamsollahi, Z., Partovinia, A. Recent advances on pollutants removal by rice husk as a bio-based adsorbent: A critical review (2019) Journal of Environmental Management, 246, pp. 314-323. Cited 78 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/7/1/index.htt doi: 10.1016/j.jenvman.2019.05.145spa
dc.relation.referencesSun, S., Zhu, J., Zheng, Z., Li, J., Gan, M. Biosynthesis of β-cyclodextrin modified Schwertmannite and the application in heavy metals adsorption (2019) Powder Technology, 342, pp. 181-192. Cited 26 times. www.elsevier.com/locate/powtec doi:10.1016/j.powtec.2018.09.072spa
dc.relation.referencesPang, H., Diao, Z., Wang, X., Ma, Y., Yu, S., Zhu, H., Chen, Z., (...), Wang, X. Adsorptive and reductive removal of U(VI) by Dictyophora indusiate-derived biochar supported sulfide NZVI from wastewater (2019) Chemical Engineering Journal, 366, pp. 368-377. Cited 127 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2019.02.098spa
dc.relation.referencesQu, J., Yuan, Y., Meng, Q., Zhang, G., Deng, F., Wang, L., Tao, Y., (...), Zhang, Y. Simultaneously enhanced removal and stepwise recovery of atrazine and Pb(II) from water using β–cyclodextrin functionalized cellulose: Characterization, adsorptive performance and mechanism exploration (2020) Journal of Hazardous Materials, 400, art. no. 123142. Cited 40 times. www.elsevier.com/locate/jhazmat doi: 10.1016/j.jhazmat.2020.123142spa
dc.relation.referencesWu, L., Li, B., Liu, M. Influence of aromatic structure and substitution of carboxyl groups of aromatic acids on their sorption to biochars (2018) Chemosphere, 210, pp. 239-246. Cited 11 times. www.elsevier.com/locate/chemosphere doi: 10.1016/j.chemosphere.2018.07.003spa
dc.relation.referencesDai, Y., Zhang, N., Xing, C., Cui, Q., Sun, Q. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review (2019) Chemosphere, 223, pp. 12-27. Cited 297 times. www.elsevier.com/locate/chemosphere doi: 10.1016/j.chemosphere.2019.01.161spa
dc.relation.referencesLazarotto, J.S., da Boit Martinello, K., Georgin, J., Franco, D.S.P., Netto, M.S., Piccilli, D.G.A., Silva, L.F.O., (...), Dotto, G.L. Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4- ichlorophenoxyacetic herbicide (2021) Journal of Environmental Chemical Engineering, 9 (6), art. no. 106843. Cited 4 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2021.106843spa
dc.relation.referencesSalomón, Y.L., Georgin, J., Franco, D.S.P., Netto, M.S., Piccilli, D.G.A., Foletto, E.L., Pinto, D., (...), Dotto, G.L. Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon (2022) Journal of Molecular Liquids, 347, art. no. 117990. Cited 3 times. https://www.journals.elsevier.com/journal-of-molecular-liquids doi: 10.1016/j.molliq.2021.117990spa
dc.relation.referencesMohd Noor Hazrin, H.M., Lim, A., Li, C., Chew, J.J., Sunarso, J. Adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm trunk-derived activated carbon: Isotherm and kinetic studies at acidic, ambient condition (2022) Materials Today: Proceedings http://www.journals.elsevier.com/materials-today-proceedings/ doi: 10.1016/j.matpr.2021.09.461spa
dc.relation.referencesRambabu, K., AlYammahi, J., Bharath, G., Thanigaivelan, A., Sivarajasekar, N., Banat, F. Nano-activated carbon derived from date palm coir waste for efficient sequestration of noxious 2,4-dichlorophenoxyacetic acid herbicide (2021) Chemosphere, 282, art. no. 131103. Cited 15 times. www.elsevier.com/locate/chemosphere doi: 10.1016/j.chemosphere.2021.131103spa
dc.relation.referencesPandiarajan, A., Kamaraj, R., Vasudevan, S., Vasudevan, S. OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: Adsorption isotherm, kinetic modelling and thermodynamic studies (2018) Bioresource Technology, 261, pp. 329-341. Cited 131 times. www.elsevier.com/locate/biortech doi: 10.1016/j.biortech.2018.04.005spa
dc.relation.referencesWei, X., Wu, Z., Wu, Z., Ye, B.-C. Adsorption behaviors of atrazine and Cr(III) onto different activated carbons in single and co-solute systems (2018) Powder Technology, 329, pp. 207-216. Cited 40 times. www.elsevier.com/locate/powtec doi:10.1016/j.powtec.2018.01.060spa
dc.relation.referencesSellaoui, L., Silva, L.F.O., Badawi, M., Ali, J., Favarin, N., Dotto, G.L., Erto, A., (...), Chen, Z. Adsorption of ketoprofen and 2- nitrophenol on activated carbon prepared from winery wastes: A combined experimental and theoretical study (2021) Journal of Molecular Liquids, 333, art. no. 115906. Cited 11 times. https://www.journals.elsevier.com/journal-of-molecular-liquids doi: 10.1016/j.molliq.2021.115906spa
dc.relation.referencesSellaoui, L., Dhaouadi, F., Li, Z., Cadaval, T.R.S., Igansi, A.V., Pinto, L.A.A., Dotto, G.L., (...), Chen, Z. Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film (2021) Journal of Environmental Chemical Engineering, 9 (4), art. no. 105516. Cited 15 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2021.105516spa
dc.relation.referencesXue, H., Wang, X., Xu, Q., Dhaouadi, F., Sellaoui, L., Seliem, M.K., Ben Lamine, A., (...), Li, Q. Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: A comparative study by experimental and advanced modeling analysis (2022) Chemical Engineering Journal, Part 2 430, art. no. 132801. Cited 29 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2021.132801spa
dc.relation.referencesWei, X., Wu, Z., Wu, Z., Ye, B.-C. Adsorption behaviors of atrazine and Cr(III) onto different activated carbons in single and co-solute systems (2018) Powder Technology, 329, pp. 207-216. Cited 40 times. www.elsevier.com/locate/powtec doi:10.1016/j.powtec.2018.01.060spa
dc.relation.referencesGeorgin, J., Franco, D.S.P., Netto, M.S., Piccilli, D.G.A., Foletto, E.L., Dotto, G.L. Adsorption investigation of 2,4-D herbicide on acid-treated peanut (Arachis hypogaea) skins (2021) Environmental Science and Pollution Research, 28 (27), pp. 36453-36463. Cited 5 times. https://link.springer.com/journal/11356 doi: 10.1007/s11356-021-12813-0spa
dc.relation.referencesGeorgin, J., Franco, D.S.P., Grassi, P., Tonato, D., Piccilli, D.G.A., Meili, L., Dotto, G.L. Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents (2019) Environmental Science and Pollution Research, 26 (19), pp. 19207-19219. Cited 31 times. http://www.springerlink.com/content/0944-1344 doi: 10.1007/s11356-019-05321-9spa
dc.relation.referencesFreundlich, H. Über die adsorption in lösungen (1907) Z. Phys. Chem., 57 U. Cited 13526 times.spa
dc.relation.referencesBering, B.P., Gordeeva, V.A., Dubinin, M.M., Efimova, L.I., Serpinskii, V.V. Development of concepts of the volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents - Communication 4. Differential heats and entropies of adsorption (1971) Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 20 (1), pp. 17-22. Cited 14 times. doi: 10.1007/BF00849310 View at Publisherspa
dc.relation.referencesLangmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum (1918) Journal of the American Chemical Society, 40 (9), pp. 1361-1403. Cited 16258 times. doi: 10.1021/ja02242a004spa
dc.relation.referencesLima, É.C., Dehghani, M.H., Guleria, A., Sher, F., Karri, R.R., Dotto, G.L., Tran, H.N. Adsorption: Fundamental aspects and applications of adsorption for effluent treatment (2021) Green Technologies for the Defluoridation of Water, pp. 41-88. Cited 12 times. https://www.sciencedirect.com/book/9780323857680 ISBN: 978-032385768-0 doi: 10.1016/B978-0-323-85768-0.00004-Xspa
dc.relation.referencesLima, E.C., Hosseini-Bandegharaei, A., Moreno-Piraján, J.C., Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption (2019) Journal of Molecular Liquids, 273, pp. 425-434. Cited 643 times. https://www.journals.elsevier.com/journal-of-molecular-liquids doi: 10.1016/j.molliq.2018.10.048spa
dc.relation.referencesGlueckauf, E. Theory of chromatography: Part 10. - Formula for diffusion into spheres and their application to chromatography (1955) Transactions of the Faraday Society, 51, pp. 1540-1551. Cited 776 times. doi: 10.1039/TF9555101540spa
dc.relation.referencesRehrah, D., Bansode, R.R., Hassan, O., Ahmedna, M. Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment (2016) Journal of Analytical and Applied Pyrolysis, 118, pp. 42-53. Cited 54 times. doi: 10.1016/j.jaap.2015.12.022spa
dc.relation.referencesSbizzaro, M., César Sampaio, S., Rinaldo dos Reis, R., de Assis Beraldi, F., Medina Rosa, D., Maria Branco de Freitas Maia, C., Saramago de Carvalho Marques dos Santos Cordovil, C., (...), Eduardo Borba, C. Effect of production temperature in biochar properties from bamboo culm and its influences on atrazine adsorption from aqueous systems (2021) Journal of Molecular Liquids, 343, art. no. 117667. Cited 5 times. https://www.journals.elsevier.com/journal-of-molecular-liquids doi: 10.1016/j.molliq.2021.117667spa
dc.relation.referencesGoswami, R., Shim, J., Deka, S., Kumari, D., Kataki, R., Kumar, M. Characterization of cadmium removal from aqueous solution by biochar produced from Ipomoea fistulosa at different pyrolytic temperatures (2016) Ecological Engineering, 97, pp. 444-451. Cited 93 times. www.elsevier.com/inca/publications/store/5/2/2/7/5/1 doi: 10.1016/j.ecoleng.2016.10.007spa
dc.relation.referencesXia, D., Tan, F., Zhang, C., Jiang, X., Chen, Z., Li, H., Zheng, Y., (...), Wang, Y. ZnCl 2 -activated biochar from biogas residue facilitates aqueous As(III) removal (2016) Applied Surface Science, 377, pp. 361-369. Cited 90 times. http://www.journals.elsevier.com/applied-surface-science/ doi: 10.1016/j.apsusc.2016.03.109spa
dc.relation.referencesCougnaud, A., Faur, C., Le Cloirec, P. Removal of pesticides from aqueous solution: Quantitative relationship between activated carbon characteristics and adsorption properties (2005) Environmental Technology, 26 (8), pp. 857-866. Cited 22 times. http://www.tandf.co.uk/journals/titles/09593330.asp doi: 10.1080/09593332608618497spa
dc.relation.referencesZhao, C., Ma, J., Li, Z., Xia, H., Liu, H., Yang, Y. Highly enhanced adsorption performance of tetracycline antibiotics on KOH-activated biochar derived from reed plants (2020) RSC Advances, 10 (9), pp. 5066-5076. Cited 21 times. http://pubs.rsc.org/en/journals/journal/ra doi: 10.1039/c9ra09208kspa
dc.relation.referencesLuo, M., Lin, H., He, Y., Zhang, Y. The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil (2020) Science of the Total Environment, 717, art. no. 137014. Cited 49 times. www.elsevier.com/locate/scitotenv doi: 10.1016/j.scitotenv.2020.137014spa
dc.relation.referencesLammirato, C., Miltner, A., Kaestner, M. Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger (2011) Soil Biology and Biochemistry, 43 (9), pp. 1936-1942. Cited 112 times. doi: 10.1016/j.soilbio.2011.05.021spa
dc.relation.referencesLi, Z., Jin, Y., Chen, T., Tang, F., Cai, J., Ma, J. Trimethylchlorosilane modified activated carbon for the adsorption of VOCs at high humidity (2021) Separation and Purification Technology, 272, art. no. 118659. Cited 11 times. http://www.journals.elsevier.com/separation-and-purification-technology/ doi: 10.1016/j.seppur.2021.118659spa
dc.relation.referencesThommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) (2015) Pure and Applied Chemistry, 87 (9-10), pp. 1051-1069. Cited 7679 times. http://www.degruyter.com/view/j/pac doi: 10.1515/pac-2014-1117spa
dc.relation.referencesHollister, C.C., Bisogni, J.J., Lehmann, J. Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover (zea mays l.) and oak wood (quercus spp.) (2013) Journal of Environmental Quality, 42 (1), pp. 137-144. Cited 127 times. https://www.agronomy.org/publications/jeq/pdfs/42/1/137 doi: 10.2134/jeq2012.0033spa
dc.relation.referencesAhmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.-K., Yang, J.E., Ok, Y.S. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water (2012) Bioresource Technology, 118, pp. 536-544. Cited 771 times. doi: 10.1016/j.biortech.2012.05.042spa
dc.relation.referencesPeng, P., Lang, Y.-H., Wang, X.-M. Adsorption behavior and mechanism of pentachlorophenol on reed biochars: PH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms (2016) Ecological Engineering, 90, pp. 225-233. Cited 113 times. www.elsevier.com/inca/publications/store/5/2/2/7/5/1 doi: 10.1016/j.ecoleng.2016.01.039spa
dc.relation.referencesMahdi, Z., Hanandeh, A.E., Yu, Q. Influence of Pyrolysis Conditions on Surface Characteristics and Methylene Blue Adsorption of Biochar Derived from Date Seed Biomass (2017) Waste and Biomass Valorization, 8 (6), pp. 2061-2073. Cited 51 times. http://www.springer.com/engineering/journal/12649 doi: 10.1007/s12649-016-9714-yspa
dc.relation.referencesZhao, B., O'Connor, D., Zhang, J., Peng, T., Shen, Z., Tsang, D.C.W., Hou, D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar (2018) Journal of Cleaner Production, 174, pp. 977-987. Cited 322 times. doi: 10.1016/j.jclepro.2017.11.013spa
dc.relation.referencesKeiluweit, M., Nico, P.S., Johnson, M., Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar) (2010) Environmental Science and Technology, 44 (4), pp. 1247-1253. Cited 1848 times. doi: 10.1021/es9031419spa
dc.relation.referencesMeili, L., Lins, P.V.S., Costa, M.T., Almeida, R.L., Abud, A.K.S., Soletti, J.I., Dotto, G.L., (...), Erto, A. Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modelling (2019) Progress in Biophysics and Molecular Biology, 141, pp. 60-71. Cited 77 times. www.elsevier.com/inca/publications/store/4/0/8 doi: 10.1016/j.pbiomolbio.2018.07.011spa
dc.relation.referencesZhou, J., Zhu, W., Yu, J., Zhang, H., Zhang, Y., Lin, X., Luo, X. Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La Tri-metal hydroxide (2018) Applied Surface Science, 435, pp. 920-927. Cited 75 times. http://www.journals.elsevier.com/applied-surface-science/ doi: 10.1016/j.apsusc.2017.11.108spa
dc.relation.referencesSalvestrini, S., Sagliano, P., Iovino, P., Capasso, S., Colella, C. Atrazine adsorption by acid-activated zeolite-rich tuffs (2010) Applied Clay Science, 49 (3), pp. 330-335. Cited 82 times. doi: 10.1016/j.clay.2010.04.008spa
dc.relation.referencesLladó, J., Lao-Luque, C., Ruiz, B., Fuente, E., Solé-Sardans, M., Dorado, A.D. Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics(2015) Process Safety and Environmental Protection, 95, pp. 51-59. Cited 97 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/713889/description#description doi: 10.1016/j.psep.2015.02.013spa
dc.relation.referencesCuerda-Correa, E.M., Domínguez-Vargas, J.R., Olivares-Marín, F.J., de Heredia, J.B. On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water (2010) Journal of Hazardous Materials, 177 (1-3), pp. 1046-1053. Cited 95 times. doi: 10.1016/j.jhazmat.2010.01.026spa
dc.relation.referencesAlahabadi, A., Moussavi, G. Preparation, characterization and atrazine adsorption potential of mesoporous carbonate-induced activated biochar (CAB) from Calligonum Comosum biomass: Parametric experiments and kinetics, equilibrium and thermodynamic modeling (2017) Journal of Molecular Liquids, 242, pp. 40-52. Cited 39 times. doi: 10.1016/j.molliq.2017.06.116spa
dc.relation.referencesChabalala, M.B., Al-Abri, M.Z., Mamba, B.B., Nxumalo, E.N. Mechanistic aspects for the enhanced adsorption of bromophenol blue and atrazine over cyclodextrin modified polyacrylonitrile nanofiber membranes (2021) Chemical Engineering Research and Design, 169, pp. 19-32. Cited 17 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/713871/description#description doi: 10.1016/j.cherd.2021.02.010spa
dc.relation.referencesCao, Y., Jiang, S., Zhang, Y., Xu, J., Qiu, L., Wang, L. Investigation into adsorption characteristics and mechanism of atrazine on nano-MgO modified fallen leaf biochar (2021) Journal of Environmental Chemical Engineering, 9 (4), art. no. 105727. Cited 10 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2021.105727spa
dc.relation.referencesAllam, E.A., Ali, A.S.M., Elsharkawy, R.M., Mahmoud, M.E. Framework of nano metal oxides N-NiO@N-Fe3O4@N-ZnO for adsorptive removal of atrazine and bisphenol-A from wastewater: Kinetic and adsorption studies (2021) Environmental Nanotechnology, Monitoring and Management, 16, art. no. 100481. Cited 9 times. http://www.journals.elsevier.com/environmental-nanotechnology-monitoring-and-management/ doi: 10.1016/j.enmm.2021.100481spa
dc.relation.referencesBayati, M., Numaan, M., Kadhem, A., Salahshoor, Z., Qasim, S., Deng, H., Lin, J., (...), Fidalgo De Cortalezzi, M. Adsorption of atrazine by laser induced graphitic material: An efficient, scalable and green alternative for pollution abatement (2020) Journal of Environmental Chemical Engineering, 8 (5), art. no. 104407. Cited 8 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2020.104407spa
dc.relation.referencesYue, L., Ge, C., Feng, D., Yu, H., Deng, H., Fu, B. Adsorption–desorption behavior of atrazine on agricultural soils in China (2017) Journal of Environmental Sciences (China), 57, pp. 180-189. Cited 93 times. http://www.journals.elsevier.com/journal-of-environmental-sciences/ doi: 10.1016/j.jes.2016.11.002spa
dc.relation.referencesWei, X., Wu, Z., Du, C., Wu, Z., Ye, B.-C., Cravotto, G. Enhanced adsorption of atrazine on a coal-based activated carbon modified with sodium dodecyl benzene sulfonate under microwave heating (2017) Journal of the Taiwan Institute of Chemical Engineers, 77, pp. 257-262. Cited 19 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/715607/description#description doi: 10.1016/j.jtice.2017.04.004spa
dc.relation.referencesToledo-Jaldin, H.P., Blanco-Flores, A., Sánchez-Mendieta, V., Martín-Hernández, O. Influence of the chain length of surfactant in the modification of zeolites and clays. Removal of atrazine from water solutions (2018) Environmental Technology (United Kingdom), 39 (20), pp. 2679-2690. Cited 8 times. http://www.tandf.co.uk/journals/titles/09593330.asp doi: 10.1080/09593330.2017.1365097spa
dc.relation.referencesMachado, F.M., Bergmann, C.P., Fernandes, T.H.M., Lima, E.C., Royer, B., Calvete, T., Fagan, S.B. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon (2011) Journal of Hazardous Materials, 192 (3), pp. 1122-1131. Cited 292 times. doi: 10.1016/j.jhazmat.2011.06.020spa
dc.relation.referencesGeorgin, J., Franco, D.S.P., Schadeck Netto, M., Allasia, D., Foletto, E.L., Oliveira, L.F.S., Dotto, G.L. Transforming shrub waste into a high-efficiency adsorbent: Application of Physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide (2021) Journal of Environmental Chemical Engineering, 9 (1), art. no. 104574. Cited 27 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2020.104574spa
dc.relation.referencesGeorgin, J., Franco, D.S.P., Netto, M.S., de Salomón, Y.L.O., Piccilli, D.G.A., Foletto, E.L., Dotto, G.L. Adsorption and mass transfer studies of methylene blue onto comminuted seedpods from Luehea divaricata and Inga laurina (2021) Environmental Science and Pollution Research, 28 (16), pp. 20854-20868. Cited 3 times. https://link.springer.com/journal/11356 doi: 10.1007/s11356-020-11957-9spa
dc.relation.referencesFranco, D.S.P., Georgin, J., Netto, M.S., Allasia, D., Oliveira, M.L.S., Foletto, E.L., Dotto, G.L. Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species (2021) Journal of Environmental Chemical Engineering, 9 (5), art. no. 105927. Cited 16 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2021.105927spa
dc.relation.referencesThue, P.S., Umpierres, C.S., Lima, E.C., Lima, D.R., Machado, F.M., dos Reis, G.S., da Silva, R.S., (...), Tran, H.N. Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol (2020) Journal of Hazardous Materials, 398, art. no. 122903. Cited 45 times. www.elsevier.com/locate/jhazmat doi: 10.1016/j.jhazmat.2020.122903spa
dc.relation.referencesKennedy, C.R., Lin, S., Jacobsen, E.N. The Cation–π Interaction in Small-Molecule Catalysis (2016) Angewandte Chemie - International Edition, 55 (41), pp. 12596-12624. Cited 130 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1521-3773 doi: 10.1002/anie.201600547spa
dc.subject.proposalAdsorptioneng
dc.subject.proposalAtrazineeng
dc.subject.proposalBiochareng
dc.subject.proposalPesticideseng
dc.subject.proposalRiver watereng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationendpage10spa
dc.relation.citationstartpage1spa
dc.relation.citationissue3spa
dc.relation.citationvolume10spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cfspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

© 2022 Elsevier Ltd. All rights reserved.
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 Elsevier Ltd. All rights reserved.