Mostrar el registro sencillo del ítem

dc.contributor.authorAcosta Fontalvo, Luis Carlosspa
dc.contributor.authorMartínez Marín, Sindy Johanaspa
dc.contributor.authorJiménez Barros, Miguelspa
dc.contributor.authorParra Negrete, Kevinspa
dc.contributor.authorCortabarria, Lauraspa
dc.contributor.authorOvallos, Davidspa
dc.date.accessioned2022-07-14T19:41:02Z
dc.date.available2022-07-14T19:41:02Z
dc.date.issued2022-01-26
dc.identifier.citationLuis Acosta Fontalvo, Sindy Martínez-Marín, Miguel Jiménez-Barros, Kevin Parra-Negrete, Laura Cortabarria-Castañeda, David Ovallos-Gazabon, Modeling Energy-Efficient Policies in Educational Buildings – A Literature Review, Procedia Computer Science, Volume 198, 2022, Pages 608-613, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.12.294.spa
dc.identifier.issn18770509spa
dc.identifier.urihttps://hdl.handle.net/11323/9370spa
dc.description.abstractThis work focuses on a literature review that characterizes the most prominent lines of research on energy efficiency in educational buildings, including energy use intensity (EUI); the implementation of energy efficiency measurement; the results obtained by decreasing the EUI, energy consumption, and CO2 emission; and the main relationships between energy consumption incidence variables. For these purposes, a systematic literature review is structured based on specialized databases, wherein the information is assessed using spreadsheets and visualization tools such as VOSviewer®. From the review, the authors were able to determine that the integration of energy efficiency with educational institutions is a growing line of research that offers opportunities for building an environmentally sustainable educational culture with high social impact. This paper discusses different modeling systems and policy assessment options that identifies complexity and dynamics constraints to explore new simulation methodologies, such as systems dynamics providing sustainable approaches within industry 4.0 based on the assessment of national energy efficiency policies through dynamic simulation models that allow significant savings in energy-consuming sectors.eng
dc.format.extent6 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherElsevier BVspa
dc.rights© 2021 The Authors. Published by Elsevier B.Vspa
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.titleModeling Energy-Efficient Policies in Educational Buildings - A Literature Revieweng
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.1016/j.procs.2021.12.294spa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S1877050921025333?pes=vor#!spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.1016/j.procs.2021.12.294spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeNetherlandsspa
dc.relation.ispartofjournalProcedia Computer Sciencespa
dc.relation.references[1] Santos, A. H. Cd; Fagá, M. T. W.; Santos, E. (2013) “Md The Risks of an Energy Efficiency Policy for Buildings Based Solely on the Consumption Evaluation of Final Energy”. Int. J. Electr. Power Energy Syst., 44 (1), 70–77.spa
dc.relation.references[2] Misila, P.; Winyuchakrit, P.; Chunark, P.; Limmeechokchai, B. (2017) “GHG Mitigation Potentials of Thailand’s Energy Policies to Achieve INDC Target”. Energy Procedia, 138, 913–918.spa
dc.relation.references[3] Feng, C.; Wang, M. (2017) “Analysis of Energy Efficiency and Energy Savings Potential in China’s Provincial Industrial Sectors”. J. Clean. Prod. 164, 1531–1541. 6 Author name / Procedia Computer Science 00 (2018) 000–000spa
dc.relation.references[4] Bukarica, V.; Tomšić, Ž. (2017) “Energy Efficiency Policy Evaluation by Moving from Techno-Economic Towards Whole Society Perspective on Energy Efficiency Market. Renew”. Sustain. Energy Rev. 70, 968–975.spa
dc.relation.references[5] Bunse, K.; Vodicka, M.; Schönsleben, P.; Brülhart, M.; Ernst, F. O. (2011) “Integrating Energy Efficiency Performance in Production Management - Gap Analysis Between Industrial Needs and Scientific Literature”. J. Clean. Prod. 19 (6–7), 667–679.spa
dc.relation.references[6] Cárdenas Ardila, L. M.; Franco Cardona, C. J.; Dyner Rizonzew, I., (2016) “Plataforma para la evaluación de políticas de mitigación de gases efecto invernadero en el sector eléctrico”.spa
dc.relation.references[7] Jokar, Z.; Mokhtar, A. (2018) “Policy Making in the Cement Industry for CO2 Mitigation on the Pathway of Sustainable Development- A System Dynamics Approach”. J. Clean. Prod. 201, 142–155.spa
dc.relation.references[8] Tukulis, A.; Pakere, I.; Gravelsins, A.; Blumberga, D. (2018) “Methodology of System Dynamic Approach for Solar Energy Integration in District Heating”. Energy Procedia. 147, 130–136.spa
dc.relation.references[9] Yang, X.; Lou, F.; Sun, M.; Wang, R.; Wang, Y. (2017) “Study of the Relationship Between Greenhouse Gas Emissions and the Economic Growth of Russia Based on the Environmental Kuznets Curve”. Appl. Energy. 193, 162–173.spa
dc.relation.references[10] Cardenas, L. M.; Franco, C. J.; Dyner, I. (2016) “Assessing Emissions–Mitigation Energy Policy Under Integrated Supply and Demand Analysis: The Colombian Case”. J. Clean. Prod. 112, 3759–3773.spa
dc.relation.references[11] Blumberga, A.; Blumberga, D.; Bazbauers, G.; Zogla, G.; Laicane, I. (2014) “Sustainable Development Modelling for the Energy Sector”. J. Clean. Prod. 63, 134–142.spa
dc.relation.references[12] Bohlmann, J. A.; Inglesi-Lotz, R. (2018) “Analysing the South African Residential Sector’s Energy Profile. Renew. Sustain”. Energy Rev. 96, 240–252.spa
dc.relation.references[13] Zhou, X.; Yan, J.; Zhu, J.; Cai, P. (2013) “Survey of Energy Consumption and Energy Conservation Measures for Colleges and Universities in Guangdong Province”. Energy Build. 66, 112–118.spa
dc.relation.references[14] Emodi, N. V.; Emodi, C. C.; Murthy, G. P.; Emodi, A. S. A. (2017) “Energy Policy for Low Carbon Development in Nigeria: A LEAP Model Application. Renew. Sustain”. Energy Rev. 68, 247–261.spa
dc.relation.references[15] Wang, J.; Zhao, T.; Wang, Y. (2016) “How to Achieve the 2020 and 2030 Emissions Targets of China: Evidence from High, Mid and Low Energy-Consumption Industrial Sub-Sectors”. Atmos. Environ. 145, 280–292.spa
dc.relation.references[16] Griffin, P. W.; Hammond, G. P.; Norman, J. B. (2016) “Industrial Energy Use and Carbon Emissions Reduction: A UK Perspective”. WIREs Energy Environ. 5 (6), 684–714.spa
dc.relation.references[17] Ovallos-Gazabon, D. et al. (2019) “Using Text Min. Tool. Define Trends Territ”. Compet. Indic. 1052.spa
dc.relation.references[18] Dias Pereira, L. D.; Raimondo, D.; Corgnati, S. P.; Gameiro Da Silva, M. Energy Consumption in Schools - A Review Paper. Renew. Sustain. Energy Rev. 2014, 40, 911–922.spa
dc.relation.references[19] Wang, J. C. A. (2016) “Study on the Energy Performance of School Buildings in Taiwan”. Energy Build. 133, 810–822.spa
dc.relation.references[20] Allab, Y.; Pellegrino, M.; Guo, X.; Nefzaoui, E.; Kindinis, A. (2017) “Energy and Comfort Assessment in Educational Building: Case Study in a French University Campus”. Energy Build. 143, 202–219.spa
dc.relation.references[21] Chung, M. H.; Rhee, E. K. (2014) “Potential Opportunities for Energy Conservation in Existing Buildings on University Campus: A Field Survey in Korea”. Energy Build. 78, 176–182.spa
dc.relation.references[22] Leopold, A. (2016) “Energy Related System Dynamic Models: A Literature Review”. Cent. Eur. J. Oper. Res. 24 (1), 231–261.spa
dc.relation.references[23] May, G.; Stahl, B.; Taisch, M.; Kiritsis, D. Energy Management in Manufacturing: From Literature Review to a Conceptual Framework. J. Clean. Prod. 2016, 1–26.spa
dc.relation.references[24] Bye, B.; Fæhn, T.; Rosnes, O. (2018) “Residential Energy Efficiency Policies: Costs, Emissions and Rebound Effects”. Energy 143, 191– 201.spa
dc.relation.references[25] Kannan, R. The Development and Application of a Temporal MARKAL Energy System Model Using Flexible Time Slicing. Appl. Energy Jun. 2011, 88 (6), 2261–2272.spa
dc.relation.references[26] Sterman, J., Business Dynamics: Systems Thinking and Modeling for a Complex World, 2000.spa
dc.relation.references[27] Ansari, N.; Seifi, A. A System Dynamics Model for Analyzing Energy Consumption and CO2 Emission in Iranian Cement Industry Under Various Production and Export Scenarios. Energy Policy 2013, 58, 75–89.spa
dc.relation.references[28] Hsu, C.-W. Using a System Dynamics Model to Assess the Effects of Capital Subsidies and Feed-In Tariffs on Solar PV Installations. Appl. Energy Dec 2012, 100, 205–217.spa
dc.relation.references[29] Hu, B.; Leopold, A.; Pickl, S. Transition Towards Renewable Energy Supply—A System Dynamics Approach. In Green Growth Sustain. Dev.; Springer 2013, 217–226.spa
dc.relation.references[30] Martínez Ríos, J. R., Simulación de políticas de eficiencia energética en el sector residencial en Colombia, 2013, p 142.spa
dc.relation.references[31] Hessami, A. R.; Faghihi, V.; Kim, A.; Ford, D. N. Evaluating Planning Strategies for Prioritizing Projects in Sustainability Improvement Programs. Constr. Manag. Econ. 2019, 0 (0), 1–13.spa
dc.relation.references[32] Arroyo, F.; Miguel, L. J., Analysis of Energy Demand Scenarios in Ecuador: National Government Policy Perspectives and Global Trend to Reduce CO 2 Emissions; Vol. 9 (2), 2019, pp 364–374.spa
dc.relation.references[33] Parra-Valencia, J. A., Guerrero, C. D., & Rico-Bautista, D. (2017). IoT: Una aproximación desde ciudad inteligente a universidad inteligente. Revista Ingenio, 13(1), 9-20.spa
dc.subject.proposalEnergy efficiencyeng
dc.subject.proposalBuildingseng
dc.subject.proposalEducational buildingseng
dc.subject.proposalModelingeng
dc.subject.proposalSystem dynamicseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationendpage613spa
dc.relation.citationstartpage608spa
dc.relation.citationvolume198spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

© 2021 The Authors. Published by Elsevier B.V
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2021 The Authors. Published by Elsevier B.V