Mostrar el registro sencillo del ítem

dc.contributor.authorAcuña Bedoya, Jawer Davidspa
dc.contributor.authorAlvarez Pugliese, Christian Eduardospa
dc.contributor.authorCastilla-Acevedo, Samirspa
dc.contributor.authorBravo-Suárez, Juan J.spa
dc.contributor.authorMarriaga-Cabrales, Nilsonspa
dc.date.accessioned2022-07-21T18:57:19Z
dc.date.available2024
dc.date.available2022-07-21T18:57:19Z
dc.date.issued2022
dc.identifier.citationJawer David Acuña-Bedoya, Christian E. Alvarez-Pugliese, Samir Fernando Castilla-Acevedo, Juan J. Bravo-Suárez, Nilson Marriaga-Cabrales, Degradation of diclofenac aqueous solutions in a 3D electrolytic reactor using carbon-based materials as pseudo third electrodes in fluidized bed, anodic and cathodic configurations, Journal of Environmental Chemical Engineering, Volume 10, Issue 4, 2022, 108075, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2022.108075.spa
dc.identifier.issn2213-3437spa
dc.identifier.urihttps://hdl.handle.net/11323/9391spa
dc.description.abstractIn this study, the degradation of diclofenac (DCF) in a 3D electrochemical reactor was evaluated. Several parameters were studied including the reactor configuration: fluidized bed (FB), anodic packed bed (APB) and cathodic packed bed (CPB); and the type of pseudo third electrode material: granular activated carbon (GAC) and granular expanded graphite (GEG). The configuration that showed the highest total organic carbon (TOC) removal was the APB, with values up to 85%. In addition, when the substrate saturation of the pseudo third electrode was 20% in the APB, the energy consumption was 2.5 times lower than the conventional 2D reactor. This efficient conversion was the result of improved contacting and reaction between hydroxyl (HO•) and sulfate (SO4•-) radicals electro-generated on the anode surface and DCF adsorbed on the particulate carbon. While the degradation efficiency with the 3D CPB reactor was higher than the FB configuration, it was less effective than the 3D APB reactor because of H2O2 production in the cathode, which decomposed to generate HO•, but only slowly and not sufficiently to oxidize DCF to a significant extent. Furthermore, it was also found that when two 3D APB reactors were connected in series a more significant TOC decrease (98%) and lower energy consumption (4 times) could be achieved than in a single 2D reactor configuration. This result demonstrated that the 3D electrochemical process can be cheaper and faster. All these results highlight the 3D anodic electro-oxidation process as a potential technology to efficiently treat recalcitrant contaminants of emerging concern.eng
dc.format.extent12 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherElsevier BVspa
dc.rights© 2022 Elsevier Ltd. All rights reserved.spa
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleDegradation of diclofenac aqueous solutions in a 3D electrolytic reactor using carbon-based materials as pseudo third electrodes in fluidized bed, anodic and cathodic configurationseng
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.1016/j.jece.2022.108075spa
dc.source.urlhttps://www.sciencedirect.com/science/article/abs/pii/S2213343722009484?via%3Dihubspa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.identifier.doi10.1016/j.jece.2022.108075spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeUnited Kingdomspa
dc.relation.ispartofjournalJournal of Environmental Chemical Engineeringspa
dc.relation.references[1] Y. Zhang, S.U. Geißen, C. Gal, Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies, Chemosphere 73 (2008) 1151–1161, https://doi.org/10.1016/j.chemosphere.2008.07.086.spa
dc.relation.references[2] T. Di Lorenzo, M. Cifoni, M. Baratti, G. Pieraccini, W.D. Di Marzio, D.M.P. Galassi, Four scenarios of environmental risk of diclofenac in European groundwater ecosystems, Environ. Pollut. 287 (2021), 117315, https://doi.org/10.1016/j.envpol.2021.117315.spa
dc.relation.references[3] S. Gonzalez-Alonso, ´ L.M. Merino, S. Esteban, M. Lopez ´ de Alda, D. Barcelo, ´ J. J. Duran, ´ J. Lopez-Martínez, ´ J. Acena, ˜ S. P´erez, N. Mastroianni, A. Silva, M. Catal´ a, Y. Valcarcel, ´ Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region, Environ. Pollut. 229 (2017) 241–254, https://doi.org/10.1016/j.envpol.2017.05.060.spa
dc.relation.references[4] B.P. Gumbi, B. Moodley, G. Birungi, P.G. Ndungu, Detection and quantification of acidic drug residues in South African surface water using gas chromatography-mass spectrometry, Chemosphere 168 (2017) 1042–1050, https://doi.org/10.1016/j. chemosphere.2016.10.105.spa
dc.relation.references[5] M. Rabiet, A. Togola, F. Brissaud, J.L. Seidel, H. Budzinski, F. Elbaz-Poulichet, Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized mediterranean catchment, Environ. Sci. Technol. 40 (2006) 5282–5288, https://doi.org/10.1021/es060528p.spa
dc.relation.references[6] F. Sacher, F.T. Lange, H.J. Brauch, I. Blankenhorn, Pharmaceuticals in groundwaters: analytical methods and results of a monitoring program in BadenWürttemberg, Germany, J. Chromatogr. A. 938 (2001) 199–210, https://doi.org/ 10.1016/S0021-9673(01)01266-3.spa
dc.relation.references[7] J. Schwaiger, H. Ferling, U. Mallow, H. Wintermayr, R.D. Negele, Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: Histopathological alterations and bioaccumulation in rainbow trout, Aquat. Toxicol. 68 (2004) 141–150, https://doi.org/10.1016/j.aquatox.2004.03.014.spa
dc.relation.references[8] C. Jung, A. Son, N. Her, K.D. Zoh, J. Cho, Y. Yoon, Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review, J. Ind. Eng. Chem. 27 (2015) 1–11, https://doi.org/10.1016/ j.jiec.2014.12.035.spa
dc.relation.references[9] E. Brillas, C.A. Martínez-huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review,, Appl. Catal. B, Environ. 166–167 (2015) 603–643, https://doi.org/10.1016/j.apcatb.2014.11.016.spa
dc.relation.references[10] D. Ma, H. Yi, C. Lai, X. Liu, X. Huo, Z. An, L. Li, Y. Fu, B. Li, M. Zhang, L. Qin, S. Liu, L. Yang, Critical review of advanced oxidation processes in organic wastewater treatment, Chemosphere 275 (2021), 130104, https://doi.org/10.1016/j. chemosphere.2021.130104.spa
dc.relation.references[11] V. Satizabal-Gomez, M.A. Collazos-Botero, E.A. Serna-Galvis, R.A. Torres-Palma, J. J. Bravo-Suarez, S.F. Castilla-Acevedo, Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater, Miner. Eng. 170 (2021), https://doi.org/10.1016/j.mineng.2021.107031.spa
dc.relation.references[12] S.A. Joven-Quintero, S.F. Castilla-Acevedo, L.A. Betancourt-Buitrago, R. AcostaHerazo, F. Machuca-Martinez, Photocatalytic degradation of cobalt cyanocomplexes in a novel LED photoreactor using TiO<inf>2</inf> supported on borosilicate sheets: a new perspective for mining wastewater treatment, Mater. Sci. Semicond. Process. 110 (2020), https://doi.org/10.1016/j.mssp.2020.104972.spa
dc.relation.references[13] H. Ibargüen-Lopez, ´ B. Lopez-Balanta, ´ L. Betancourt-Buitrago, E.A. Serna-Galvis, R. A. Torres-Palma, F. Machuca-Martínez, S.F. Castilla-Acevedo, Degradation of hexacyanoferrate (III) ion by the coupling of the ultraviolet light and the activation of persulfate at basic pH, J. Environ. Chem. Eng. 9 (2021), 106233, https://doi.org/10.1016/j.jece.2021.106233.spa
dc.relation.references[14] Samir Fernando Castilla-Acevedo, Luis Andr´es Betancourt-Buitrago, Dionysios D. Dionysiou, Fiderman Machuca-Martínez, Ultraviolet light-mediated activation of persulfate for the degradation of cobalt cyanocomplexes, J. Hazard. Mater. 392 (2020), https://doi.org/10.1016/j.jhazmat.2020.122389.spa
dc.relation.references[15] F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters, , Appl. Catal. B Environ. 202 (2017) 217–261, https://doi.org/ 10.1016/j.apcatb.2016.08.037.spa
dc.relation.references[16] T.A. Enache, A.M. Chiorcea-Paquim, O. Fatibello-Filho, A.M. Oliveira-Brett, Hydroxyl radicals electrochemically generated in situ on a boron-doped diamond electrode, Electrochem. Commun. 11 (2009) 1342–1345, https://doi.org/ 10.1016/j.elecom.2009.04.017.spa
dc.relation.references[17] A. Fernandes, M.J. Nunes, A.S. Rodrigues, M.J. Pacheco, L. Ciríaco, A. Lopes, Electro-persulfate processes for the treatment of complex wastewater matrices: Present and future, Molecules 26 (2021), https://doi.org/10.3390/ molecules26164821.spa
dc.relation.references[18] L. Wei, S. Guo, G. Yan, C. Chen, X. Jiang, Electrochemical pretreatment of heavy oil refinery wastewater using a three-dimensional electrode reactor, Electrochim. Acta 55 (2010) 8615–8620, https://doi.org/10.1016/j.electacta.2010.08.011.spa
dc.relation.references[19] J. Zhan, Z. Li, G. Yu, X. Pan, J. Wang, W. Zhu, X. Han, Y. Wang, Enhanced treatment of pharmaceutical wastewater by combining three-dimensional electrochemical process with ozonation to in situ regenerate granular activated carbon particle electrodes, Sep. Purif. Technol. 208 (2019) 12–18, https://doi.org/10.1016/j.seppur.2018.06.030.spa
dc.relation.references[20] M. Zhou, L. Lei, The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor, Chemosphere 65 (2006) 1197–1203, https://doi.org/10.1016/j.chemosphere.2006.03.054.spa
dc.relation.references[21] S. Cho, C. Kim, I. Hwang, Electrochemical degradation of ibuprofen using an activated-carbon-based continuous-flow three-dimensional electrode reactor (3DER), Chemosphere 259 (2020), 127382, https://doi.org/10.1016/j. chemosphere.2020.127382.spa
dc.relation.references[22] X. Wu, X. Yang, D. Wu, R. Fu, Feasibility study of using carbon aerogel as particle electrodes for decoloration of RBRX dye solution in a three-dimensional electrode reactor, Chem. Eng. J. 138 (2008) 47–54, https://doi.org/10.1016/j.cej.2007.05.027.spa
dc.relation.references[23] A. Rahmani, M. Leili, A. Seid-mohammadi, A. Shabanloo, A. Ansari, D. Nematollahi, S. Alizadeh, Improved degradation of diuron herbicide and pesticide wastewater treatment in a three-dimensional electrochemical reactor equipped with PbO2 anodes and granular activated carbon particle electrodes, J. Clean. Prod. 322 (2021), 129094, https://doi.org/10.1016/j. jclepro.2021.129094.spa
dc.relation.references[24] R.V. McQuillan, G.W. Stevens, K.A. Mumford, The electrochemical regeneration of granular activated carbons: a review, J. Hazard. Mater. 355 (2018) 34–49, https://doi.org/10.1016/j.jhazmat.2018.04.079.spa
dc.relation.references[25] H. Pourzamani, N. Mengelizadeh, Y. Hajizadeh, H. Mohammadi, Electrochemical degradation of diclofenac using three-dimensional electrode reactor with multiwalled carbon nanotubes, Environ. Sci. Pollut. Res. 25 (2018) 24746–24763, https://doi.org/10.1007/s11356-018-2527-8.spa
dc.relation.references[26] O. Garcia-Rodriguez, E. Mousset, H. Olvera-Vargas, O. Lefebvre, Electrochemical treatment of highly concentrated wastewater: a review of experimental and modeling approaches from lab- to full-scale, Crit. Rev. Environ. Sci. Technol. 52 (2022) 240–309, https://doi.org/10.1080/10643389.2020.1820428.spa
dc.relation.references[27] B.P. Chaplin, Critical review of electrochemical advanced oxidation processes for water treatment applications, Environ. Sci. Process. Impacts 16 (2014) 1182–1203, https://doi.org/10.1039/c3em00679d.spa
dc.relation.references[28] F.L. Guzman-Duque, ´ R.E. Palma-Goyes, I. Gonzalez, ´ G. Penuela, ˜ R.A. Torres-Palma, Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water, J. Hazard. Mater. 278 (2014) 221–226, https://doi.org/10.1016/j.jhazmat.2014.05.076.spa
dc.relation.references[29] C.E. Alvarez-Pugliese, J. Acuna-Bedoya, ˜ S. Vivas-Galarza, L.A. Prado-Arce, N. Marriaga-Cabrales, Electrolytic regeneration of granular activated carbon saturated with diclofenac using BDD anodes, Diam. Relat. Mater. 93 (2019) 193–199, https://doi.org/10.1016/j.diamond.2019.02.018.spa
dc.relation.references[30] N.L. Pedersen, M. Nikbakht Fini, P.K. Molnar, J. Muff, Synergy of combined adsorption and electrochemical degradation of aqueous organics by granular activated carbon particulate electrodes, Sep. Purif. Technol. 208 (2019) 51–58, https://doi.org/10.1016/j.seppur.2018.05.023.spa
dc.relation.references[31] M.R. Samarghandi, A. Ansari, A. Dargahi, A. Shabanloo, D. Nematollahi, M. Khazaei, H.Z. Nasab, Y. Vaziri, Enhanced electrocatalytic degradation of bisphenol A by graphite/β-PbO2 anode in a three-dimensional electrochemical reactor, J. Environ. Chem. Eng. 9 (2021), 106072, https://doi.org/10.1016/j. jece.2021.106072.spa
dc.relation.references[32] D. Liu, Water treatment by adsorption and electrochemical regeneration development of a liquid-lift reactor, The University of Manchester, 2015.spa
dc.relation.references[33] J. Acuna-Bedoya, ˜ J.A. Comas-Cabrales, C.E. Alvarez-Pugliese, N. MarriagaCabrales, Evaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue, J. Environ. Chem. Eng. 8 (2020), 104074, https://doi.org/10.1016/j.jece.2020.104074.spa
dc.relation.references[34] O. Garcia-Rodriguez, A. Villot, H. Olvera-Vargas, C. Gerente, Y. Andres, O. Lefebvre, Impact of the saturation level on the electrochemical regeneration of activated carbon in a single sequential reactor, Carbon N. Y 163 (2020) 265–275, https://doi.org/10.1016/j.carbon.2020.02.041.spa
dc.relation.references[35] H.K. Jeswani, H. Gujba, N.W. Brown, E.P.L. Roberts, A. Azapagic, Removal of organic compounds from water: Life cycle environmental impacts and economic costs of the Arvia process compared to granulated activated carbon, J. Clean. Prod. 89 (2015) 203–213, https://doi.org/10.1016/j.jclepro.2014.11.017.spa
dc.relation.references[36] N.W. Brown, E.P.L. Roberts, Combining adsorption with anodic oxidation as an innovative technique for removal and destruction of organics, Water Sci. Technol. 68 (2013) 1216–1222, https://doi.org/10.2166/wst.2013.297.spa
dc.relation.references[37] M.D. Vedenyapina, D.A. Borisova, A.P. Simakova, L.P. Proshina, A.A. Vedenyapin, Adsorption of diclofenac sodium from aqueous solutions on expanded graphite, Solid Fuel Chem. 47 (2013) 59–63, https://doi.org/10.3103/ S0361521912060134.spa
dc.relation.references[38] D.M. Nevskaia, A.B. Fuertes, G. Marban, Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths, Carbon N. Y 41 (2003) 87–96, https://doi.org/10.1016/S0008-6223(02)00274-9.spa
dc.relation.references[39] Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Expanded graphite as superior anode for sodium-ion batteries, Nat. Commun. 5 (2014) 1–10, https://doi.org/10.1038/ncomms5033.spa
dc.relation.references[40] W. Zheng, S.C. Wong, Electrical conductivity and dielectric properties of PMMA/expanded graphite composites, Compos. Sci. Technol. 63 (2003) 225–235, https:// doi.org/10.1016/S0266-3538(02)00201-4.spa
dc.relation.references[41] C.B. Beck, Physicochemical processes for water quality control, Wiley Interscience, John Wiley & Sons, New York, 1973, https://doi.org/10.1002/aic.690190245.spa
dc.relation.references[42] J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figures of merit for the technical development and application of advanced oxidation technologies for both electric and solar driven systems (IUPAC Technical Report), Pure Appl. Chem. 73 (2001) 627–637, https://doi.org/10.1351/pac200173040627.spa
dc.relation.references[43] B.H. Hameed, A.T.M. Din, A.L. Ahmad, Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies, J. Hazard. Mater. 141 (2007) 819–825, https://doi.org/10.1016/j.jhazmat.2006.07.049.spa
dc.relation.references[44] J. Lach, A. Szymonik, Adsorption of diclofenac sodium from aqueous solutions on commercial activated carbons, Desalin. Water Treat. 186 (2020) 418–429, https://doi.org/10.5004/dwt.2020.25567.spa
dc.relation.references[45] N. Gonzalez-Ipia, ´ K.C. Bolanos-Chamorro, ˜ J.D. Acuna-Bedoya, ˜ F. MachucaMartínez, S.F. Castilla-Acevedo, Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment, J. Environ. Chem. Eng. 8 (2020), 104336, https://doi.org/10.1016/j.jece.2020.104336.spa
dc.relation.references[46] C.J. Sun, L.Z. Sun, X.X. Sun, Graphical evaluation of the favorability of adsorption processes by using conditional langmuir constant, Ind. Eng. Chem. Res. 52 (2013) 14251–14260, https://doi.org/10.1021/ie401571p.spa
dc.relation.references[47] J.L. Sotelo, A.R. Rodríguez, M.M. Mateos, S.D. Hernandez, ´ S.A. Torrellas, J. G. Rodríguez, Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials, J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes 47 (2012) 640–652, https://doi.org/10.1080/03601234.2012.668462.spa
dc.relation.references[48] C. Saucier, M.A. Adebayo, E.C. Lima, R. Catalu, P.S. Thue, L.D.T. Prola, F. M. Machado, F.A. Pavan, G.L. Dotto, Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents 289 (2015) 18–27, https://doi.org/10.1016/j.jhazmat.2015.02.026.spa
dc.relation.references[49] S. Larous, A. Meniai, Adsorption of Diclofenac from aqueous solution using activated carbon prepared from olive stones, Int. J. Hydrog. Energy 41 (2016) 10380–10390, https://doi.org/10.1016/j.ijhydene.2016.01.096.spa
dc.relation.references[50] I. Bouaziz, M. Hamza, A. Sellami, R. Abdelhedi, A. Savall, K. Groenen Serrano, New hybrid process combining adsorption on sawdust and electroxidation using a BDD anode for the treatment of dilute wastewater, Sep. Purif. Technol. 175 (2017) 1–8, https://doi.org/10.1016/j.seppur.2016.11.020.spa
dc.relation.references[51] H. Vald´es, M. Sanchez-Polo, ´ J. Rivera-Utrilla, C.A. Zaror, Effect of ozone treatment on surface properties of activated carbon, Langmuir 18 (2002) 2111–2116, https://doi.org/10.1021/la010920a.spa
dc.relation.references[52] N. Yuan, A. Zhao, Z. Hu, K. Tan, J. Zhang, Preparation and application of porous materials from coal gasification slag for wastewater treatment: a review, Chemosphere 287 (2022), 132227, https://doi.org/10.1016/j. chemosphere.2021.132227.spa
dc.relation.references[53] H. Valdes, M. Sanchez-Polo, C.A. Zaror, Effect of ozonation on the activated carbon surface chemical properties and on 2-mercaptobenzothiazole adsorption, Lat. Am. Appl. Res. 33 (2003) 219–223.spa
dc.relation.references[54] B. Wang, W. Kong, H. Ma, Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode, J. Hazard. Mater. 146 (2007) 295–301, https://doi.org/10.1016/j.jhazmat.2006.12.031.spa
dc.relation.references[55] A. El-Ghenymy, C. Arias, P.L. Cabot, F. Centellas, J.A. Garrido, R.M. Rodríguez, E. Brillas, Electrochemical incineration of sulfanilic acid at a boron-doped diamond anode, Chemosphere 87 (2012) 1126–1133, https://doi.org/10.1016/j. chemosphere.2012.02.006.spa
dc.relation.references[56] G.W. Reade, A.H. Nahle, P. Bond, J.M. Friedrich, F.C. Walsh, Removal of cupric ions from acidic sulfate solution using reticulated vitreous carbon rotating cylinder electrodes, J. Chem. Technol. Biotechnol. 79 (2004) 935–945, https://doi.org/ 10.1002/jctb.1076.spa
dc.relation.references[57] K.Y. Foo, B.H. Hameed, A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects, J. Hazard. Mater. 170 (2009) 552–559, https://doi.org/10.1016/j.jhazmat.2009.05.057.spa
dc.relation.references[58] A. Fortuny, J. Font, A. Fabregat, Wet air oxidation of phenol using active carbon as catalyst, Appl. Catal. B, Environ. 19 (1998), https://doi.org/10.1016/S0926-3373 (98)00072-1.spa
dc.relation.references[59] S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Heterogeneous Fenton catalysts based on activated carbon and related materials, ChemSusChem 4 (2011) 1712–1730, https://doi.org/10.1002/cssc.201100216.spa
dc.relation.references[60] R.V. McQuillan, G.W. Stevens, K.A. Mumford, The electrochemical regeneration of granular activated carbons: a review, J. Hazard. Mater. 355 (2018) 34–49, https:// doi.org/10.1016/j.jhazmat.2018.04.079.spa
dc.relation.references[61] W. Zhou, X. Meng, J. Gao, H. Zhao, G. Zhao, J. Ma, Electrochemical regeneration of carbon-based adsorbents: a review of regeneration mechanisms, reactors, and future prospects, Chem. Eng. J. Adv. 5 (2021), 100083, https://doi.org/10.1016/j. ceja.2020.100083.spa
dc.relation.references[62] W. Zhou, X. Meng, Y. Ding, L. Rajic, J. Gao, Y. Qin, A.N. Alshawabkeh, “Selfcleaning” electrochemical regeneration of dye-loaded activated carbon, Electrochem. Commun. 100 (2019) 85–89, https://doi.org/10.1016/j. elecom.2019.01.025.spa
dc.relation.references[63] C.A. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, Appl. Catal. B Environ. 87 (2009) 105–145, https://doi.org/10.1016/j.apcatb.2008.09.017.spa
dc.relation.references[64] R. Xie, X. Meng, P. Sun, J. Niu, W. Jiang, Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact, Appl. Catal. B, Environ. 203 (2017) 515–525, https://doi.org/10.1016/j.apcatb.2016.10.057.spa
dc.relation.references[65] Y. Wang, L. Zhu, N. Ba, F. Gao, H. Xie, Effects of NH4F quantity on N-doping level, photodegradation and photocatalytic H2 production activities of N-doped TiO2 nanotube array films, Mater. Res. Bull. 86 (2017) 268–276, https://doi.org/ 10.1016/j.materresbull.2016.10.031.spa
dc.relation.references[66] K. Yapsaklı, F. Çeçen, O. ¨ Aktas¸, Z.S. Can, Impact of surface properties of granular activated carbon and preozonation on adsorption and desorption of natural organic matter, Environ. Eng. Sci. 26 (2009) 489–500, https://doi.org/10.1089/ ees.2008.0005.spa
dc.relation.references[67] M. Zhou, L. Lei, The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor, Chemosphere 65 (2006) 1197–1203, https://doi.org/10.1016/j.chemosphere.2006.03.054.spa
dc.relation.references[68] C. Comninellis, G. Chen, Electrochemistry for the Enviroment, New York, 2008. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf (accessed March 12, 2014).spa
dc.relation.references[69] E. Brillas, S. Garcia-Segura, M. Skoumal, C. Arias, Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and borondoped diamond anodes, Chemosphere 79 (2010) 605–612, https://doi.org/ 10.1016/j.chemosphere.2010.03.004.spa
dc.relation.references[70] D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review, Water Res 139 (2018) 118–131, https://doi.org/10.1016/j. watres.2018.03.042.spa
dc.relation.references[71] N. Nippatlapalli, K. Ramakrishnan, L. Philip, Enhanced degradation of complex organic compounds in wastewater using different novel continuous flow non – Thermal pulsed corona plasma discharge reactors, Environ. Res. 203 (2022), 111807, https://doi.org/10.1016/j.envres.2021.111807.spa
dc.relation.references[72] M. of Environment and climate change, Guidance Document for Integrating UV - based Advanced Oxidation Processes ( AOPs) Into Municipal Wastewater Treatment Plants, Showcasing Water Innov. Progr. 28 (2015). 〈http://civil.enginee ring.utoronto.ca/wp-content/uploads/2015/09/SWI_Guidance_Document_-_Final. pdf〉. accessed March 2, 2022.spa
dc.relation.references[73] P. Sathishkumar, R. Viswanathan, Review on the recent improvements in sonochemical and combined sonochemical oxidation processes – A powerful tool for destruction of environmental contaminants, Renew. Sustain. Energy Rev. 55 (2016) 426–454, https://doi.org/10.1016/j.rser.2015.10.139.spa
dc.relation.references[74] G. Coria, J.L. Nava, G. Carreno, ˜ Electrooxidation of diclofenac in synthetic pharmaceutical wastewater using an electrochemical reactor equipped with a boron doped diamond electrode, J. Mex. Chem. Soc. 58 (2014) 303–308.spa
dc.relation.references[75] A. Yasmin, J.J. Luo, I.M. Daniel, Processing of expanded graphite reinforced polymer nanocomposites, Compos. Sci. Technol. 66 (2006) 1182–1189, https:// doi.org/10.1016/j.compscitech.2005.10.014.spa
dc.relation.references[76] H. Vald´es, C.A. Zaror, Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: kinetic approach, Chemosphere 65 (2006) 1131–1136, https://doi.org/10.1016/j.chemosphere.2006.04.027.spa
dc.relation.references[77] Z. Ren, D. Zhou, L. Zhang, M. Yu, Z. Wang, Y. Fan, ZnSn(OH)6 Photocatalyst for Methylene Blue Degradation: Electrolyte-Dependent Morphology and Performance, ChemistrySelect (2018) 10849–10856, https://doi.org/10.1002/ slct.201802195.spa
dc.relation.references[78] N. Gedam, N.R. Neti, Carbon attrition during continuous electrolysis in carbon bed based three-phase three-dimensional electrode reactor: Treatment of recalcitrant chemical industry wastewater, J. Environ. Chem. Eng. 2 (2014) 1527–1532, https://doi.org/10.1016/j.jece.2014.06.025spa
dc.subject.proposalBoron doped diamondeng
dc.subject.proposalElectro-oxidationeng
dc.subject.proposalAdsorptioneng
dc.subject.proposalGranular activated carboneng
dc.subject.proposalGranular expanded graphiteeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationendpage12spa
dc.relation.citationstartpage1spa
dc.relation.citationissue4spa
dc.relation.citationvolume10spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cfspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

© 2022 Elsevier Ltd. All rights reserved.
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 Elsevier Ltd. All rights reserved.