Mostrar el registro sencillo del ítem

dc.contributor.authorMayet, Abdulilahspa
dc.contributor.authorMehdi Alizadeh, Seyedspa
dc.contributor.authorAzeez Kakarash, Zanaspa
dc.contributor.authorAl-Qahtani, Ali Awadhspa
dc.contributor.authorAlanazi, Abdullahspa
dc.contributor.authorGrimaldo Guerrero, John Williamspa
dc.contributor.authorAlhashimi, Hala H.spa
dc.contributor.authorEftekhari-Zadeh, Ehsanspa
dc.date.accessioned2022-08-04T14:24:50Z
dc.date.available2022-08-04T14:24:50Z
dc.date.issued2022-07-13
dc.identifier.citationMayet, A.M.; Alizadeh, S.M.; Kakarash, Z.A.; Al-Qahtani, A.A.; Alanazi, A.K.; Grimaldo Guerrero, J.W.; Alhashimi, H.H.; Eftekhari-Zadeh, E. Increasing the Efficiency of a Control System for Detecting the Type and Amount of Oil Product Passing through Pipelines Based on Gamma-Ray Attenuation, Time Domain Feature Extraction, and Artificial Neural Networks. Polymers 2022, 14, 2852. https://doi.org/10.3390/ polym14142852spa
dc.identifier.urihttps://hdl.handle.net/11323/9429spa
dc.description.abstractInstantaneously determining the type and amount of oil product passing through pipelines is one of the most critical operations in the oil, polymer and petrochemical industries. In this research, a detection system is proposed in order to monitor oil pipelines. The system uses a dual-energy gamma source of americium-241 and barium-133, a test pipe, and a NaI detector. This structure is implemented in the Monte Carlo N Particle (MCNP) code. It should be noted that the results of this simulation have been validated with a laboratory structure. In the test pipe, four oil products—ethylene glycol, crude oil, gasoil, and gasoline—were simulated two by two at various volume percentages. After receiving the signal from the detector, the feature extraction operation was started in order to provide suitable inputs for training the neural network. Four time characteristics—variance, fourth order moment, skewness, and kurtosis—were extracted from the received signal and used as the inputs of four Radial Basis Function (RBF) neural networks. The implemented neural networks were able to predict the volume ratio of each product with great accuracy. High accuracy, low cost in implementing the proposed system, and lower computational cost than previous detection methods are among the advantages of this research that increases its applicability in the oil industry. It is worth mentioning that although the presented system in this study is for monitoring of petroleum fluids, it can be easily used for other types of fluids such as polymeric fluids.eng
dc.format.extent16 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherMDPI AGspa
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland.spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.titleIncreasing the efficiency of a control system for detecting the type and amount of oil product passing through pipelines based on gamma-ray attenuation, time domain feature extraction, and artificial neural networkseng
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.3390/polym14142852spa
dc.source.urlhttps://www.mdpi.com/2073-4360/14/14/2852spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.3390/polym14142852spa
dc.identifier.eissn2073-4360spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeSwitzerlandspa
dc.relation.ispartofjournalPolymersspa
dc.relation.references1. Hosseini, S.; Taylan, O.; Abusurrah, M.; Akilan, T.; Nazemi, E.; Eftekhari-Zadeh, E.; Bano, F.; Roshani, G.H. Application of Wavelet Feature Extraction and Artificial Neural Networks for Improving the Performance of Gas–Liquid Two-Phase Flow Meters Used in Oil and Petrochemical Industries. Polymers 2021, 13, 3647. [CrossRef] [PubMed]spa
dc.relation.references2. Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H.; Peyvandi, R.G.; Setayeshi, S. Precise Void Fraction Measurement in Two-phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation. Nucl. Eng. Technol. 2016, 48, 64–71. [CrossRef]spa
dc.relation.references3. Roshani, G.; Nazemi, E.; Feghhi, S. Investigation of using 60 Co source and one detector for determining the flow regime and void fraction in gas–liquid two-phase flows. Flow Meas. Instrum. 2016, 50, 73–79. [CrossRef]spa
dc.relation.references4. Roshani, G.H.; Karami, A.; Nazemi, E.; Shama, F. Volume fraction determination of the annular three-phase flow of gas-oil-water using adaptive neuro-fuzzy inference system. Comput. Appl. Math. 2018, 37, 4321–4341. [CrossRef]spa
dc.relation.references5. Roshani, M.; Phan, G.; Roshani, G.H.; Hanus, R.; Nazemi, B.; Corniani, E.; Nazemi, E. Combination of X-ray tube and GMDH neural network as a nondestructive and potential technique for measuring characteristics of gas-oil–water three phase flows. Measurement 2021, 168, 108427. [CrossRef]spa
dc.relation.references6. Roshani, G.H.; Karami, A.; Nazemi, E. An intelligent integrated approach of Jaya optimization algorithm and neu-ro-fuzzy network to model the stratified three-phase flow of gas–oil–water. Comput. Appl. Math. 2019, 38, 5. [CrossRef]spa
dc.relation.references7. Sattari, M.A.; Roshani, G.H.; Hanus, R. Improving the structure of two-phase flow meter using feature extraction and GMDH neural network. Radiat. Phys. Chem. 2020, 171, 108725. [CrossRef]spa
dc.relation.references8. Sattari, M.A.; Roshani, G.H.; Hanus, R.; Nazemi, E. Applicability of time-domain feature extraction methods and artificial intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement 2021, 168, 108474. [CrossRef]spa
dc.relation.references9. Roshani, M.; Sattari, M.A.; Ali PJ, M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Application of GMDH neural network technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter. Flow Meas. Instrum. 2020, 75, 101804. [CrossRef]spa
dc.relation.references10. Alamoudi, M.; Sattari, M.; Balubaid, M.; Eftekhari-Zadeh, E.; Nazemi, E.; Taylan, O.; Kalmoun, E. Application of Gamma Attenuation Technique and Artificial Intelligence to Detect Scale Thickness in Pipelines in Which Two-Phase Flows with Different Flow Regimes and Void Fractions Exist. Symmetry 2021, 13, 1198. [CrossRef]spa
dc.relation.references11. Roshani, M.; Phan, G.; Faraj, R.H.; Phan, N.H.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Proposing a gamma radia-tion based intelligent system for simultaneous analyzing and detecting type and amount of petroleum by-products. Nucl. Eng. Technol. 2021, 53, 1277–1283. [CrossRef]spa
dc.relation.references12. Basahel, A.; Sattari, M.; Taylan, O.; Nazemi, E. Application of Feature Extraction and Artificial Intelligence Techniques for Increasing the Accuracy of X-ray Radiation Based Two Phase Flow Meter. Mathematics 2021, 9, 1227. [CrossRef]spa
dc.relation.references13. Taylan, O.; Sattari, M.A.; Essoussi, I.E.; Nazemi, E. Frequency Domain Feature Extraction Investigation to Increase the Accuracy of an Intelligent Nondestructive System for Volume Fraction and Regime Determination of Gas-Water-Oil Three-Phase Flows. Mathematics 2021, 9, 2091. [CrossRef]spa
dc.relation.references14. Roshani, G.H.; Ali, P.J.M.; Mohammed, S.; Hanus, R.; Abdulkareem, L.; Alanezi, A.A.; Sattari, M.A.; Amiri, S.; Nazemi, E.; Eftekhari-Zadeh, E.; et al. Simula-tion Study of Utilizing X-ray Tube in Monitoring Systems of Liquid Petroleum Products. Processes 2021, 9, 828. [CrossRef]spa
dc.relation.references15. Balubaid, M.; Sattari, M.A.; Taylan, O.; Bakhsh, A.A.; Nazemi, E. Applications of Discrete Wavelet Transform for Feature Extraction to Increase the Accuracy of Monitoring Systems of Liquid Petroleum Products. Mathematics 2021, 9, 3215. [CrossRef]spa
dc.relation.references16. Mayet, A.M.; Alizadeh, S.M.; Nurgalieva, K.S.; Hanus, R.; Nazemi, E.; Narozhnyy, I.M. Extraction of Time-Domain Characteristics and Selection of Effective Features Using Correlation Analysis to Increase the Accuracy of Petroleum Fluid Monitoring Systems. Energies 2022, 15, 1986. [CrossRef]spa
dc.relation.references17. Nazemi, E.; Roshani, G.H.; Feghhi, S.A.H.; Setayeshi, S.; Zadeh, E.E.; Fatehi, A. Optimization of a method for identifying the flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique. Int. J. Hydrogen Energy 2016, 41, 7438–7444. [CrossRef]spa
dc.relation.references18. Sattari, M.A.; Korani, N.; Hanus, R.; Roshani, G.H.; Nazemi, E. Improving the performance of gamma radiation based two phase flow meters using optimal time characteristics of the detector output signal extraction. J. Nucl. Sci. Technol. 2020, 41, 42–54.spa
dc.relation.references19. Isaev, A.A.; Aliev, M.M.O.; Drozdov, A.N.; Gorbyleva, Y.A.; Nurgalieva, K.S. Improving the Efficiency of Curved Wells’ Operation by Means of Progressive Cavity Pumps. Energies 2022, 15, 4259. [CrossRef]spa
dc.relation.references20. Lalbakhsh, A.; Mohamadpour, G.; Roshani, S.; Ami, M.; Roshani, S.; Sayem, A.S.M.; Alibakhshikenari, M.; Koziel, S. Design of a Compact Planar Transmission Line for Miniaturized Rat-Race Coupler With Harmonics Suppression. IEEE Access 2021, 9, 129207–129217. [CrossRef]spa
dc.relation.references21. Roshani, S.; Roshani, S. A compact coupler design using meandered line compact microstrip resonant cell (MLCMRC) and bended lines. Wirel. Netw. 2021, 27, 677–684. [CrossRef]spa
dc.relation.references22. Shukla, N.K.; Mayet, A.M.; Vats, A.; Aggarwal, M.; Raja, R.K.; Verma, R.; Muqeet, M.A. High speed integrated RF–VLC data communication system: Performance constraints and capac-ity considerations. Phys. Commun. 2022, 50, 101492. [CrossRef]spa
dc.relation.references23. Hookari, M.; Roshani, S.; Roshani, S. High-efficiency balanced power amplifier using miniaturized harmonics suppressed coupler. Int. J. RF Microw. Comput.-Aided Eng. 2020, 30, e22252. [CrossRef]spa
dc.relation.references24. Mayet, A.; Hussain, A.; Hussain, M. Three-terminal nanoelectromechanical switch based on tungsten nitride, an amor-phous metallic material. Nanotechnology 2016, 27, 035202. [CrossRef]spa
dc.relation.references25. Lotfi, S.; Roshani, S.; Roshani, S.; Gilan, M.S. Wilkinson power divider with band-pass filtering response and harmonics suppression using open and short stubs. Frequenz 2020, 74, 169–176. [CrossRef]spa
dc.relation.references26. Mayet, A.; Hussain, M. Amorphous WNx Metal For Accelerometers and Gyroscope. In Proceedings of the MRS Fall Meeting, Boston, MA, USA, 30 November–5 December 2014.spa
dc.relation.references27. Jamshidi, M.; Siahkamari, H.; Roshani, S.; Roshani, S. A compact Gysel power divider design using U-shaped and T-shaped resonators with harmonics suppression. Electromagnetics 2019, 39, 491–504. [CrossRef]spa
dc.relation.references28. Mayet, A.; Smith, C.E.; Hussain, M.M. Energy reversible switching from amorphous metal based nanoelectromechanical switch. In Proceedings of the Nanotechnology (IEEE-NANO), 2013 13th IEEE Conference, Beijing, China, 5–8 August 2013; pp. 366–369.spa
dc.relation.references29. Roshani, S.; Roshani, S. Two-section impedance transformer design and modeling for power amplifier applications. Appl. Comput. Electromagn. Soc. J. 2017, 32, 1042–1047.spa
dc.relation.references30. Khaibullina, K.S.; Sagirova, L.R.; Sandyga, M.S. Substantiation and selection of an inhibitor for preventing the formation of asphaltresin-paraffin deposits. [Substanciação e seleção de um inibidor para evitar a formação de depósitos de asfalto-resina-parafina]. Period. Tche Quim. 2020, 17, 541–551.spa
dc.relation.references31. Jamshidi, M.B.; Roshani, S.; Talla, J.; Roshani, S.; Peroutka, Z. Size reduction and performance improvement of a microstrip Wil-kinson power divider using a hybrid design technique. Sci. Rep. 2021, 11, 7773. [CrossRef]spa
dc.relation.references32. Mayet, A.; Smith, C.; Hussain, M.M.; Smith, C. Amorphous metal based nanoelectromechanical switch. In Proceedings of the 2013 Saudi International Electronics, Communications and Photonics Conference, Riyadh, Saudi Arabia, 27–30 April 2013; pp. 1–5. [CrossRef]spa
dc.relation.references33. Hookari, M.; Roshani, S.; Roshani, S. Design of a low pass filter using rhombus-shaped resonators with an analytical LC equiv-alent circuit. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 865–874. [CrossRef]spa
dc.relation.references34. Khaibullina, K.S.; Korobov, G.Y.; Lekomtsev, A.V. Development of an asphalt-resin-paraffin deposits inhibitor and substantiation of the technological parameters of its injection into the bottom-hole formation zone. [Desenvolvimento de um inibidor de depósito de asfalto-resinaparafina e subscantiação dos parâmetros tecnológicos de sua injeção na zona de formação de furo inferior]. Period. Tche Quim. 2020, 17, 769–781.spa
dc.relation.references35. Pirasteh, A.; Roshani, S.; Roshani, S. Design of a miniaturized class F power amplifier using capacitor loaded transmission lines. Frequenz 2020, 74, 145–152. [CrossRef]spa
dc.relation.references36. Tikhomirova, E.A.; Sagirova, L.R.; Khaibullina, K.S. A review on methods of oil saturation modelling using IRAP RMS. IOP Conf. Ser. Earth Environ. Sci. 2019, 378, 012075. [CrossRef]spa
dc.relation.references37. Roshani, S.; Dehghani, K.; Roshani, S. A lowpass filter design using curved and fountain shaped resonators. Frequenz 2019, 73, 267–272. [CrossRef]spa
dc.relation.references38. Khaibullina, K. Technology to Remove Asphaltene, Resin and Paraffin Deposits in Wells Using Organic Solvents. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dubai, United Arab Emirates, 26–28 September 2016. [CrossRef]spa
dc.relation.references39. Roshani, S.; Roshani, S. Design of a compact LPF and a miniaturized Wilkinson power divider using aperiodic stubs with harmonic suppression for wireless applications. Wirel. Netw. 2020, 26, 1493–1501. [CrossRef]spa
dc.relation.references40. Alanazi, A.K.; Alizadeh, S.M.; Nurgalieva, K.S.; Guerrero, J.W.G.; Abo-Dief, H.M.; Eftekhari-Zadeh, E.; Nazemi, E.; Narozhnyy, I.M. Optimization of X-ray Tube Voltage to Improve the Precision of Two Phase Flow Meters Used in Petroleum Industry. Sustainability 2021, 13, 13622. [CrossRef]spa
dc.relation.references41. Alanazi, A.K.; Alizadeh, S.M.; Nurgalieva, K.S.; Nesic, S.; Guerrero, J.W.G.; Abo-Dief, H.M.; Eftekhari-Zadeh, E.; Nazemi, E.; Narozhnyy, I.M. Application of Neural Network and Time-Domain Feature Extraction Techniques for Determining Volumetric Percentages and the Type of Two Phase Flow Regimes Independent of Scale Layer Thickness. Appl. Sci. 2022, 12, 1336. [CrossRef]spa
dc.relation.references42. Mayet, A.M.; Salama, A.S.; Alizadeh, S.M.; Nesic, S.; Guerrero, J.W.G.; Eftekhari-Zadeh, E.; Nazemi, E.; Iliyasu, A.M. Applying Data Mining and Artificial Intelligence Techniques for High Precision Measuring of the Two-Phase Flow’s Characteristics Independent of the Pipe’s Scale Layer. Electronics 2022, 11, 459. [CrossRef]spa
dc.relation.references43. Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P.; Smith, S.L. Low-Cost Non-Uniform Metallic Lattice for Rectifying Aperture Near-Field of Electromagnetic Bandgap Resonator Antennas. IEEE Trans. Antennas Propag. 2020, 68, 3328–3335. [CrossRef]spa
dc.relation.references44. Paul, G.S.; Mandal, K.; Lalbakhsh, A. Single-layer ultra-wide stop-band frequency selective surface using interconnected square rings. AEU-Int. J. Electron. Commun. 2021, 132, 153630. [CrossRef]spa
dc.relation.references45. Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P. Simulation-driven particle swarm optimization of spatial phase shifters. In Proceedings of the 18th IEEE international Conference on Electromagnetics in Advanced Applications (ICEAA), Cairns, Australia, 5–9 September 2016; pp. 428–430. [CrossRef]spa
dc.relation.references46. Lalbakhsh, A.; Lotfi-Neyestanak, A.A.; Naser-Moghaddasi, M. Microstrip Hairpin Bandpass Filter Using Modified Minkowski Fractal-for Suppression of Second Harmonic. IEICE Trans. Electron. 2012, E95-C, 378–381. [CrossRef]spa
dc.relation.references47. Hartman, E.J.; Keeler, J.D.; Kowalski, J.M. Layered neural networks with Gaussian hidden units as universal approximators. Neural Comput. 1990, 2, 210–215. [CrossRef]spa
dc.relation.references48. Yu, B.; He, X. Training radial basis function networks with differential evolution. In Proceedings of the IEEE International Conference on Granular Computing, Atlanta, GA, USA, 10–12 May 2006; pp. 369–372. [CrossRef]spa
dc.relation.references49. Çolak, A.B. An experimental study on the comparative analysis of the effect of the number of data on the error rates of artificial neural networks. Int. J. Energy Res. 2021, 45, 478–500. [CrossRef]spa
dc.relation.references50. Çolak, A.B.; Shafiq, A.; Sindhu, T.N. Modeling of Darcy–Forchheimer bioconvective Powell Eyring nanofluid with artificial neural network. Chin. J. Phys. 2022, 77, 2435–2453. [CrossRef]spa
dc.relation.references51. Shafiq, A.; Çolak, A.B.; Lone, S.A.; Sindhu, T.N.; Muhammad, T. Reliability modeling and analysis of mixture of exponential distributions using artificial neural net-work. Math. Methods Appl. Sci. 2022, 45, 1–21. [CrossRef]spa
dc.relation.references52. Hosseini, S.; Roshani, G.H.; Setayeshi, S. Precise gamma based two-phase flow meter using frequency feature extraction and only one detector. Flow Meas. Instrum. 2020, 72, 101693. [CrossRef]spa
dc.relation.references53. Roshani, M.; Ali, P.J.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Phan, N.H.; Tran, H.N.; Nazemi, E. X-ray tube with artificial neural net-work model as a promising alternative for radioisotope source in radiation based two phase flowmeters. Appl. Radia-Tion Isot. 2020, 164, 109255. [CrossRef]spa
dc.relation.references54. Peyvandi, R.G.; Rad, S.I. Application of artificial neural networks for the prediction of volume fraction using spectra of gamma rays backscattered by three-phase flows. Eur. Phys. J. Plus 2017, 132, 511. [CrossRef]spa
dc.relation.references55. Roshani Gholam, H.; Ehsan, N.; Farzin, S.; Imani Mohammad, A.; Salar, M. Designing a simple radiometric system to predict void fraction percentage independent of flow pattern using radial basis function. Metrol. Meas. Syst. 2018, 25, 347–358.spa
dc.relation.references56. Roshani, G.H.; Nazemi, E.; Feghhi, S.A.H.; Setayeshi, S. Flow regime identification and void fraction prediction in two-phase flows based on gamma ray attenuation. Measurement 2015, 62, 25–32. [CrossRef]spa
dc.subject.proposalDetection systemeng
dc.subject.proposalFeature extractioneng
dc.subject.proposalRBF neural networkeng
dc.subject.proposalOil and polymeric fluidseng
dc.subject.proposalDual-energy gamma sourceeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationendpage16spa
dc.relation.citationstartpage1spa
dc.relation.citationissue14spa
dc.relation.citationvolume14spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional (CC BY 4.0)