Show simple item record

dc.rights.licenseAtribución 4.0 Internacional (CC BY 4.0)spa
dc.contributor.authorSantos Sousa, Rejane
dc.contributor.authorSantos Sousa, Caroline
dc.contributor.authorCosta Oliveira, Francisco Leonardo
dc.contributor.authorFirmino, Paulo Ricardo
dc.contributor.authorFreitas Sousa, Isadora Karolina
dc.contributor.authorVeras Paula, Valeria
dc.contributor.authorMercado Caruso, Nohora Nubia
dc.contributor.authorLippi Ortolani, Enrico
dc.contributor.authorMinervino, Antonio
dc.contributor.authorBarrêto-Júnior, Raimundo Alves
dc.identifier.citationSousa, R.S.; Sousa, C.S.; Oliveira, F.L.C.; Firmino, P.R.; Sousa, I.K.F.; Paula, V.V.; Caruso, N.M.; Ortolani, E.L.; Minervino, A.H.H.; Barrêto-Júnior, R.A. Impact of Acute Blood Loss on Clinical, Hematological, Biochemical, and Oxidative Stress Variables in Sheep. Vet. Sci. 2022, 9, 229. https://
dc.description.abstractBlood loss in sheep can have different causes and may result in anemia. We aimed to evaluate the clinical, hematological, and biochemical alterations and the oxidative stress generated by acute blood loss. Eighteen healthy sheep underwent phlebotomy to remove 40% of the blood volume and were evaluated clinically and by laboratory tests for clinical, biochemical, and blood gas variables and to assess oxidative stress before induction (T0), 30 min (T30 min), and 6 (T6 h), 12 (T12 h), and 24 h (T24 h) after blood loss. The sheep showed tachycardia from T30 min until T24 h, reduction in the hematocrit, number of erythrocytes, and hemoglobin concentration, with lower values at T24 h and increase in the number of leukocytes from T12 h on. There was a reduction in blood pH and oxygen pressure at T30 min, increased lactate concentration and reduced blood bicarbonate at this time. There was an increase in urea concentration from T6 h until the end of the study, with no change in creatinine levels. The animals did not show changes in the concentration of malonaldehyde, and in the activity of the enzymes superoxide dismutase, glutathione peroxidase, and catalase, but there was a reduction in the concentration of reduced glutathione at T24 h. The acute loss of 40% of blood volume is capable of promoting relevant clinical, hematological, blood gas, and biochemical alterations, and contributed to the appearance of oxidative stress with reduced glutathione concentration, suggesting that this process generated free radicals in sufficient quantity to diminish the action of antioxidants.eng
dc.format.extent9 páginasspa
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)spa
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.titleImpact of acute blood loss on clinical, hematological, biochemical, and oxidative stress variables in sheepeng
dc.typeArtículo de revistaspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.relation.ispartofjournalVeterinary Sciencesspa
dc.relation.references1. de Azambuja Ribeiro, E.L.; González-García, E. Indigenous Sheep Breeds in Brazil: Potential Role for Contributing to the Sustainability of Production Systems. Trop. Anim. Health Prod. 2016, 48, 1305–1313. [CrossRef] [PubMed]spa
dc.relation.references2. Raineri, C.; Nunes, B.C.P.; Gameiro, A.H. Technological Characterization of Sheep Production Systems in Brazil. Anim. Sci. J. 2015, 86, 476–485. [CrossRef] [PubMed]spa
dc.relation.references3. Debortoli, E.C.; Monteiro, A.L.G.; Gameiro, A.H.; Saraiva, L.C.V.F. Meat Sheep Farming Systems According to Economic and Productive Indicators: A Case Study in Southern Brazil. Rev. Bras. Zootec. 2021, 50, 1–12. [CrossRef]spa
dc.relation.references4. IBGE (Instituto Brasileiro de Geografía e Estatística). Produção Pecuária Municipal; IBGE: Rio de Janeiro, Brazil, 2020. Available online: (accessed on 15 January 2021).spa
dc.relation.references5. Argolo, E.P.; Firmino, P.R.; Soares, J.O.; Nunes, T.L.; Abrantes, M.R.; Sousa, R.S.; Oliveira, F.L.C.; Paula, V.V.; Ortolani, E.L.; Minervino, A.H.H.; et al. Clinical Responses to Acute Blood Loss in Goats. Semin. Cienc. Agrar. 2018, 39, 583–592. [CrossRef]spa
dc.relation.references6. Thrall, M.A.; Fagliari, J.J.; Thiesen, R.; Barros Sobrinho, A. Hematologia e Bioquímica Clínica Veterinária; Roca: Barcelona, Spain, 2014; ISBN
dc.relation.references7. Abdalla, S.E.; Abdelatif, A.M.; Omer, S.A. Thermoregulation and Haematological Responses to Induced Acute Haemorrhage in Adult Nubian Goats. J. Appl. Life Sci. Int. 2019, 21, 1–12. [CrossRef]spa
dc.relation.references8. Abdalla, S.E.; Abdelatif, A.M. Effects of Haemorrhage on Thermoregulation, Heart Rate and Blood Constituents in Goats (Capra Hircus). Pak. J. Biol. Sci. 2008, 11, 1194–1203. [CrossRef]spa
dc.relation.references9. Dorneles, T.E.A.; Junior, J.D.C.; Almeida, R.M.; Neto, A.R.T. Biochemical and Hematologic Changes in Whole Blood from Brazilian Horses Stored in Citrate–Phosphate–Dextrose–Adenine Pouches for up to 28 Days. Vet. Clin. Pathol. 2021, 50, 221–226. [CrossRef]spa
dc.relation.references10. Grune, T.; Sommerburg, O.; Siems, W.G. Oxidative Stress in Anemia. Clin. Nephrol. 2000, 53, 18–
dc.relation.references11. Sarada, S.K.S.; Dipti, P.; Anju, B.; Pauline, T.; Kain, A.K.; Sairam, M.; Sharma, S.K.; Ilavazhagan, G.; Kumar, D.; Selvamurthy, W. Antioxidant Effect of Beta-Carotene on Hypoxia Induced Oxidative Stress in Male Albino Rats. J. Ethnopharmacol. 2002, 79, 149–153. [CrossRef]spa
dc.relation.references12. Chiumiento, L.; Bruschi, F. Enzymatic Antioxidant Systems in Helminth Parasites. Parasitol. Res. 2009, 105, 593–603. [CrossRef]spa
dc.relation.references13. Baptistiolli, L.; Narciso, L.G.; de Almeida, B.F.M.; Bosco, A.M.; de Souza, J.C.; Torrecilha, R.B.P.; Pereira, P.P.; Figueiredo, R.N.; Garcia, J.F.; Kaneto, C.N.; et al. Systemic Oxidative Stress in Suffolk and Santa Ines Sheep Experimentally Infected with Haemonchus Contortus. Acta Parasitol. 2018, 63, 504–514. [CrossRef] [PubMed]spa
dc.relation.references14. Esmaeilnejad, B.; Tavassoli, M.; Asri-Rezaei, S.; Dalir-Naghadeh, B.; Malekinejad, H.; Jalilzadeh-Amin, G.; Arjmand, J.; Golabi, M.; Hajipour, N. Evaluation of Antioxidant Status, Oxidative Stress and Serum Trace Mineral Levels Associated with Babesia Ovis Parasitemia in Sheep. Vet. Parasitol. 2014, 205, 38–45. [CrossRef] [PubMed]spa
dc.relation.references15. Sousa, R.S.; Minervino, A.H.H.; Oliveira, F.L.C.; Araújo, C.A.S.C.; Rodrigues, F.A.M.L.; Zaminhan, J.L.R.; Vale, R.G.; Tavares, M.D.; Mori, C.S.; de Paula, V.V.; et al. Impact of Blood Storage Duration on Hematologic, Blood Gas, Biochemical, and Oxidative Stress Variables in Sheep Undergoing Allogeneic Blood Transfusions. Vet. Clin. Pathol. 2020, 49, 545–556. [CrossRef] [PubMed]spa
dc.relation.references16. Nunes Neto, O.G.; Ricarte, S.A.; Sousa, R.S.; Portela, J.M.; Morini, A.C.; Neves, K.A.L.; Batista, H.R.; Oliveira, F.L.C.; Ortolani, E.L.; Barreto Junior, R.A.; et al. Hematological Changes in Buffalo (Bubalus Bubalis) Whole Blood Stored in CPDA-1 or CPD/SAG-M Plastic Bags. Buffalo Bull. 2018, 37, 403–
dc.relation.references17. Barros, I.O.; Sousa, R.S.; Tavares, M.D.; Rêgo, R.O.; Firmino, P.R.; Souza, F.J.A.; Abrantes, M.R.; Minervino, A.H.H.; Araújo, C.A.S.C.; Ortolani, E.L.; et al. Assessment of Donkey (Equus asinus africanus) Whole Blood Stored in CPDA-1 and CPD/SAG-M Blood Bags. Biology 2021, 10, 133. [CrossRef]spa
dc.relation.references18. Notomi, M.K.; de Gopegui, R.R.; Escodro, P.B. Haematologic Effects of Leukoreduction on Canine Whole Blood Post-Filtration and Post-Storage. Comp. Clin. Pathol. 2016, 25, 145–149. [CrossRef]spa
dc.relation.references19. Cummings, K.A.; Abelson, A.L.; Rozanski, E.A.; Sharp, C.R. The Effect of Storage on Ammonia, Cytokine, and Chemokine Concentrations in Feline Whole Blood. J. Vet. Emerg. Crit. Care 2016, 26, 639–645. [CrossRef]spa
dc.relation.references20. Pereira, E.S.; Lima, F.W.R.; Marcondes, M.I.; Rodrigues, J.P.P.; Campos, A.C.N.; Silva, L.P.; Bezerra, L.R.; Pereira, M.W.F.; Oliveira, R.L. Energy and Protein Requirements of Santa Ines Lambs, a Breed of Hair Sheep. Animal 2017, 11, 2165–2174. [CrossRef]spa
dc.relation.references21. Radostits, O.M.; Gay, C.C.; Hinchcliff, K.W.; Constable, P.D. Veterinary Medicine: A Textbook of the Diseases of Cattle, Sheep, Pigs, Goats, and Horses, 10th ed.; Saunders Elsevier: Philadelphia, PA, USA, 2007; ISBN
dc.relation.references22. Vinholte, B.P.; Sousa, R.d.S.; Assis, F.F.V.; Nunes Neto, O.G.; Portela, J.M.; Pinto, G.A.S.; Ortolani, E.L.; Benesi, F.J.; Barrêto Júnior, R.A.; Minervino, A.H.H. The Effects of Pre-Storage Leukoreduction on the Conservation of Bovine Whole Blood in Plastic Bags. Biology 2020, 9, 444. [CrossRef]spa
dc.relation.references23. Ortolani, E.L.; Maruta, C.A.; Barrêto Junior, R.A.; Mori, C.S.; Antonelli, A.C.; Sucupira, M.C.A.; Minervino, A.H.H. Metabolic Profile of Steers Subjected to Normal Feeding, Fasting, and Re-Feeding Conditions. Vet. Sci. 2020, 7, 95. [CrossRef]spa
dc.relation.references24. Esterbauer, H.; Cheeseman, K.H. Determination of Aldehydic Lipid Peroxidation Products: Malonaldehyde and 4-Hydroxynonenal. Methods Enzymol. 1990, 186, 407–421. [PubMed]spa
dc.relation.references25. Beutler, E.; Duron, O.; Kelly, B.M. Improved Method for the Determination of Blood Glutathione. J. Lab. Clin. Med. 1963, 61, 882–888. [PubMed]spa
dc.relation.references26. Aebi, H. Catalase in Vitro. Methods Enzymol. 1984, 105, 121–126. [PubMed]spa
dc.relation.references27. Bordin, A.I.; Oliveira, H.P.; Freitas, C.F.; Verçosa, D.; Marval, C.A.; Fonseca, M.R.; Pagliosa, G.; Souza, M.V.; Alves, G.E.S. Effects of 7,5% Hypertonic Saline in 5% Glucose on Serum Levels of Sodium, Chloride and Potassium in Induced Hypovolemic Horses. Arq. Bras. Med. Vet. Zootec. 2007, 59, 621–626. [CrossRef]spa
dc.relation.references28. Marson, F.; Pereira, G.A., Jr.; Filho, A.P.; Basile-Filho, A. A Síndrome Do Choque Circulatório. Medicina 1998, 31, 369–379. [CrossRef]spa
dc.relation.references29. Scully, C.G.; Daluwatte, C.; Marques, N.R.; Khan, M.; Salter, M.; Wolf, J.; Nelson, C.; Salsbury, J.; Enkhbaatar, P.; Kinsky, M.; et al. Effect of Hemorrhage Rate on Early Hemodynamic Responses in Conscious Sheep. Physiol. Rep. 2016, 4, e12739. [CrossRef]spa
dc.relation.references30. Richard, P. Dutton Pathophysiology of Traumatic Shock. In Massive Transfusion and Control of Hemorrhage in the Trauma Patient; Smith, C.E., Rosenberg, A.D., Grande, C.M., Eds.; International Trauma Anesthesia and Critical Care Society: Baltimore, MD, USA, 2003; pp. 5–
dc.relation.references31. Klein, B.G. Cunnigham’s Textbook of Veterinary Physiology; Elsevier Health Sciences: Philadelphia, PA, USA, 2013; ISBN
dc.relation.references32. Mohamed Abdelatif, A.; Abdalla, S.E.; Abdelatif, A.M. Physiological Responses of Goats (Capra hircus) to Haemorrhage as Influenced by Splenectomy. J. Sci. Res. 2010, 5, 76–
dc.relation.references33. Weiss, D.J.; Wardrop, K.J.; Weiss, D.J. Schalm’s Veterinary Hematology; Wiley: New York, NY, USA, 2011; ISBN
dc.relation.references34. Roth, J.A.; Kaeberle, M.L. Effect of Glucocorticoids on the Bovine Immune System. J. Am. Vet. Med. Assoc. 1982, 180, 894–
dc.relation.references35. Yang, E.V.; Glaser, R. Stress-Induced Immunomodulation and the Implications for Health. Int. Immunopharmacol. 2002, 2, 315–324. [CrossRef]spa
dc.relation.references36. Sousa, R.S.; Chaves, D.F.; Barrêto-Júnior, R.A.; Sousa, I.K.F.; Soares, H.S.; Barros, I.O.; Minervino, A.H.H.; Ortolani, E.L. Clinical, Haematological and Biochemical Responses of Sheep Undergoing Autologous Blood Transfusion. BMC Vet. Res. 2012, 8, 61. [CrossRef]spa
dc.relation.references37. Fonteque, J.H. Estresse Oxidativo e Lipoperoxidação Devido à Anemia Induzida Por Perda Aguda de Sangue Em Ovinos; Universidade Estadual Paulista (UNESP): São Paulo, Brazil,
dc.relation.references38. Kaneko, J.J.; Harvey, J.J.; Bruss, M.L. Clinical Biochemistry of Domestic Animals; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2008; ISBN
dc.relation.references39. Wintour, E.M.; Moritz, K.M.; Potocnik, S.J. Cardiovascular, Hormonal, and Metabolic Responses to Severe Prolonged Hemorrhage in Adult Sheep. Am. J. Vet. Res. 1995, 56, 1232–1240. [PubMed]spa
dc.relation.references40. Costagliola, C.; Romano, L.; Sorice, L.; Di Benedetto, A. Anemia and Chronic Renal Failure: The Possible Role of the Oxidative State of Glutathione. Nephron 1989, 52, 11–14. [CrossRef] [PubMed]spa
dc.relation.references41. Ludat, K.; Sommerburg, O.; Grune, T.; Siems, W.G.; Riedel, E.; Hampl, H. Oxidation Parameters in Complete Correction of Renal Anemia. Clin. Nephrol. 2000, 53, S30–
dc.relation.references42. Nanev, V.; Gabrashanska, M.; Vladov, I. Impact of Haemonchus Contortus (Nematoda) Infection on the Oxidant/Antioxidant Status in Lambs. Ecologica 2012, 19, 426–
dc.relation.references43. Dominguez, C.; Ruiz, E.; Gussinye, M.; Carrascosa, A. Oxidative Stress at Onset and in Early Stages of Type 1 Diabetes in Children and Adolescents. Diabetes Care 1998, 21, 1736–1742. [CrossRef] [PubMed]spa
dc.relation.references44. Rashid, S.; Irshadullah, M. Evaluation of Antioxidant and Oxidant Status of Goats (Capra aegagrus hircus) Naturally Infected with Haemonchus Contortus. J. Helminthol. 2020, 94, E36. [CrossRef] [PubMed]spa
dc.subject.proposalSuperoxide dismutaseeng
dc.subject.proposalGlutathione peroxidaseeng

Files in this item


This item appears in the following Collection(s)

  • Artículos científicos [2636]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Show simple item record

Atribución 4.0 Internacional (CC BY 4.0)
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional (CC BY 4.0)