Mostrar registro simples

dc.contributor.authorHernández Fernández, Joaquínspa
dc.contributor.authorGuerra, Yoleimaspa
dc.contributor.authorCANO CUADRO, HEIDIS PATRICIAspa
dc.date.accessioned2022-08-08T16:54:22Z
dc.date.available2022-08-08T16:54:22Z
dc.date.issued2022-07-28
dc.identifier.citationFernández, J.H.; Guerra, Y.; Cano, H. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832. https://doi.org/10.3390/molecules27154832spa
dc.identifier.urihttps://hdl.handle.net/11323/9439spa
dc.description.abstractBecause of its toxicity and impacts on the environment and human health, bisphenol A (BPA) has been controlled in numerous industrialized nations, increasing demand for bisphenol analogues (BP) for its replacement. However, the consequences of these chemicals on the environment and the health of persons exposed to their emissions are still being researched. The emissions from polypropylene manufacturing facilities in Colombia and Brazil were evaluated in this study, and the presence of bisphenol A and four BPs was detected among the gaseous compounds released, with total concentrations of BPs (∑BP) between 92 and 1565 ng g−1. As the melt flow index (MFI) of the polymer rises, so does the quantity of volatiles in its matrix that are eliminated during deodorization, indicating that the MFI and the amount of bisphenol released have a directly proportional connection.eng
dc.format.extent9 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)spa
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland.spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.titleDetection of bisphenol a and four analogues in atmospheric emissions in petrochemical complexes producing polypropylene in South Americaeng
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.3390/molecules27154832spa
dc.source.urlhttps://www.mdpi.com/1420-3049/27/15/4832spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.3390/molecules27154832spa
dc.identifier.eissn1420-3049spa
dc.coverage.regionSouth America
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeSwitzerlandspa
dc.relation.ispartofjournalMoleculesspa
dc.relation.references1. Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.-L.; Wu, Y.; Widelka, M. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. Environ. Sci. Technol. 2016, 50, 5438–5453. [CrossRef]spa
dc.relation.references2. Moon, M.K. Concern about the Safety of Bisphenol A Substitutes. Diabetes Metab. J. 2019, 43, 46–48. [CrossRef] [PubMed]spa
dc.relation.references3. Morin, N.; Arp, H.P.H.; Hale, S.E. Bisphenol A in Solid Waste Materials, Leachate Water, and Air Particles from Norwegian Waste-Handling Facilities: Presence and Partitioning Behavior. Environ. Sci. Technol. 2015, 49, 7675–7683. [CrossRef]spa
dc.relation.references4. Mihaich, E.M.; Friederich, U.; Caspers, N.; Hall, A.T.; Klecka, G.M.; Dimond, S.S.; Staples, C.A.; Ortego, L.S.; Hentges, S.G. Acute and chronic toxicity testing of bisphenol A with aquatic invertebrates and plants. Ecotoxicol. Environ. Saf. 2009, 72, 1392–1399. [CrossRef] [PubMed]spa
dc.relation.references5. Belfroid, A.; van Velzen, M.; van der Horst, B.; Vethaak, D. Occurrence of bisphenol A in surface water and uptake in fish: Evaluation of field measurements. Chemosphere 2002, 49, 97–103. [CrossRef]spa
dc.relation.references6. Gao, H.; Yang, B.-J.; Li, N.; Feng, L.-M.; Shi, X.-Y.; Zhao, W.-H.; Liu, S.-J. Bisphenol A and hormone-associated cancers: Current progress and perspectives. Medicine 2015, 94, e211. [CrossRef] [PubMed]spa
dc.relation.references7. Catenza, C.J.; Farooq, A.; Shubear, N.S.; Donkor, K.K. A targeted review on fate, occurrence, risk and health implications of bisphenol analogues. Chemosphere 2021, 268, 129273. [CrossRef]spa
dc.relation.references8. Cimmino, I.; Fiory, F.; Perruolo, G.; Miele, C.; Beguinot, F.; Formisano, P.; Oriente, F. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease. Int. J. Mol. Sci. 2020, 21, 5761. [CrossRef]spa
dc.relation.references9. Gao, X.; Wang, H.-S. Impact of bisphenol a on the cardiovascular system-epidemiological and experimental evidence and molecular mechanisms. Int. J. Environ. Res. Public Health 2014, 11, 8399–8413. [CrossRef] [PubMed]spa
dc.relation.references10. Liao, C.; Kannan, K. Concentrations and Profiles of Bisphenol A and Other Bisphenol Analogues in Foodstuffs from the United States and Their Implications for Human Exposure. J. Agric. Food Chem. 2013, 61, 4655–4662. [CrossRef]spa
dc.relation.references11. Qiu, W.; Zhan, H.; Hu, J.; Zhang, T.; Xu, H.; Wong, M.; Xu, B.; Zheng, C. The occurrence, potential toxicity, and toxicity mechanism of bisphenol S, a substitute of bisphenol A: A critical review of recent progress. Ecotoxicol. Environ. Saf. 2019, 173, 192–202. [CrossRef] [PubMed]spa
dc.relation.references12. Han, Y.; Fei, Y.; Wang, M.; Xue, Y.; Chen, H.; Liu, Y. Study on the Joint Toxicity of BPZ, BPS, BPC and BPF to Zebrafish. Molecules 2021, 26, 4180. [CrossRef]spa
dc.relation.references13. Gao, C.; He, H.; Qiu, W.; Zheng, Y.; Chen, Y.; Hu, S.; Zhao, X. Oxidative Stress, Endocrine Disturbance, and Immune Interference in Humans Showed Relationships to Serum Bisphenol Concentrations in a Dense Industrial Area. Environ. Sci. Technol. 2021, 55, 1953–1963. [CrossRef] [PubMed]spa
dc.relation.references14. Zhang, H.; Quan, Q.; Zhang, M.; Zhang, N.; Zhang, W.; Zhan, M.; Xu, W.; Lu, L.; Fan, J.; Wang, Q. Occurrence of bisphenol A and its alternatives in paired urine and indoor dust from Chinese university students: Implications for human exposure. Chemosphere 2020, 247, 125987. [CrossRef]spa
dc.relation.references15. Liao, C.; Liu, F.; Kannan, K. Bisphenol S, a New Bisphenol Analogue, in Paper Products and Currency Bills and Its Association with Bisphenol A Residues. Environ. Sci. Technol. 2012, 46, 6515–6522. [CrossRef]spa
dc.relation.references16. Corrales, J.; Kristofco, L.A.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B.W. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose-Response Publ. Int. Hormesis Soc. 2015, 13, 15593258–15598308. [CrossRef]spa
dc.relation.references17. Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene. Chemosphere 2021, 263, 128027. [CrossRef] [PubMed]spa
dc.relation.references18. Hernández-Fernández, J. Quantification of arsine and phosphine in industrial atmospheric emissions in Spain and Colombia. Implementation of modified zeolites to reduce the environmental impact of emissions. Atmospheric Pollut. Res. 2021, 12, 167–176. [CrossRef]spa
dc.relation.references19. Hernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461–478. [CrossRef] [PubMed]spa
dc.relation.references20. Joaquin, H.-F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2020, 1614, 460736. [CrossRef]spa
dc.relation.references21. Joaquin, H.-F.; Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385. [CrossRef]spa
dc.relation.references22. Hernández-Fernandez, J.; Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2019, 1607, 460442. [CrossRef]spa
dc.relation.references23. Hernández-Fernández, J.; López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052. [CrossRef]spa
dc.relation.references24. Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying partsper-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 2021, 1637, 461833. [CrossRef]spa
dc.relation.references25. Lee, S.; Liao, C.; Song, G.-J.; Ra, K.; Kannan, K.; Moon, H.-B. Emission of bisphenol analogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea. Chemosphere 2015, 119, 1000–1006. [CrossRef]spa
dc.relation.references26. Wang, W.; Abualnaja, K.O.; Asimakopoulos, A.G.; Covaci, A.; Gevao, B.; Johnson-Restrepo, B.; Kumosani, T.A.; Malarvannan, G.; BinhMinh, T.; Moon, H.-B.; et al. A comparative assessment of human exposure to tetrabromobisphenol A and eight bisphenols including bisphenol A via indoor dust ingestion in twelve countries. Environ. Int. 2015, 83, 183–191. [CrossRef] [PubMed]spa
dc.relation.references27. Barroso, P.J.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Evaluation of the airborne pollution by emerging contaminants using bitter orange (Citrus aurantium) tree leaves as biosamplers. Sci. Total Environ. 2019, 677, 484–492. [CrossRef]spa
dc.relation.references28. Geens, T.; Roosens, L.; Neels, H.; Covaci, A. Assessment of human exposure to Bisphenol-A, Triclosan and Tetrabromobisphenol-A through indoor dust intake in Belgium. Chemosphere 2009, 76, 755–760. [CrossRef]spa
dc.subject.proposalBisphenol Aeng
dc.subject.proposalBisphenol analogueseng
dc.subject.proposalEmissionseng
dc.subject.proposalPolypropyleneeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationendpage9spa
dc.relation.citationstartpage1spa
dc.relation.citationissue15spa
dc.relation.citationvolume27spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar registro simples

Atribución 4.0 Internacional (CC BY 4.0)
Exceto quando indicado o contrário, a licença deste item é descrito como Atribución 4.0 Internacional (CC BY 4.0)