Mostrar el registro sencillo del ítem

dc.contributor.authorMarquez Fontalvo, Nubiaspa
dc.contributor.authorMORGADO GAMERO, WENDY BEATRIZspa
dc.contributor.authorMaury Ardila, Henry Alfonsospa
dc.contributor.authorPulgar Gonzalez, Andresspa
dc.contributor.authorGindri Ramos, Claudetespa
dc.contributor.authorParody Muñoz, Alexander Eliasspa
dc.date.accessioned2022-08-30T13:55:20Z
dc.date.available2022-08-30T13:55:20Z
dc.date.issued2022
dc.identifier.citationFontalvo, N.P.M., Gamero, W.B.M., Ardila, H.A.M. et al. Removal of Nitrogenous Compounds from Municipal Wastewater Using a Bacterial Consortium: an Opportunity for More Sustainable Water Treatments. Water Air Soil Pollut 233, 339 (2022). https://doi.org/10.1007/s11270-022-05754-yspa
dc.identifier.issn0049-6979spa
dc.identifier.urihttps://hdl.handle.net/11323/9483spa
dc.description.abstractThe integrated management of water resources is a requirement for environmental preservation and economic development, with the removal of nutrients being one of the main drawbacks. In this work, the efficiency of a bacterial consortium (Ecobacter WP) made up of eight bacterial strains of the genus Bacillus subtilis, Bacillus licheniformis, Bacillus megaterium, Bacillus cereus, Arthrobacter sp., Acinetobacter paraffineus, Corynebacterium sp., and Streptomyces globisporus was evaluated in the removal of nitrogen compounds in domestic wastewater in a plug flow system, in the extended aeration and bioaugmentation (FLAEBI). To promote the nitrification and denitrification processes, three doses were tested to establish the optimal concentration of the bacterial consortium on a laboratory scale and its subsequent application in an outdoor wastewater treatment plant (WWTP). The evaluation period was 15 days for each treatment in the laboratory and WWTP. The parameters monitored both at laboratory and outdoor were pH, temperature, dissolved oxygen, chemical oxygen demand (COD), biochemical oxygen demand (BOD5), ammonium, nitrites, and nitrates. The results indicated that the optimal concentration of the consortium was 30 mg L−1, with a removal of 92% of nitrate at the laboratory and 62% outdoor. Such a difference is attributed to the different operation residence times and the volume that caused different concentration gradients. The consortium studied can be used to promote nitrification and denitrification processes that intervene in the removal of nitrogenous compounds in plants with similar operating conditions, without investment in restructuring or design modification of the WWTP.eng
dc.format.extent20 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherSpringer Netherlandsspa
dc.rights© The Author(s) 2022spa
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.titleRemoval of nitrogenous compounds from municipal wastewater using a bacterial consortium: an opportunity for more sustainable water treatmentseng
dc.typeArtículo de revistaspa
dc.identifier.urlhttps://doi.org/10.1007/s11270-022-05754-yspa
dc.source.urlhttps://link.springer.com/article/10.1007/s11270-022-05754-yspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.1007/s11270-022-05754-yspa
dc.identifier.eissn1573-2932spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeNetherlandsspa
dc.relation.ispartofjournalWater, Air, and Soil Pollutionspa
dc.relation.referencesAchak, M., Mandi, L., & Ouazzani, N. (2009). Removal of organic pollutants and nutrients from olive mill wastewater by a sand filter. Journal of Environmental Management, 90, 2771–2779. https://doi.org/10.1016/j.jenvman.2009.03.012spa
dc.relation.referencesAdolfo, G.,Castillo, S., (2016). Nutrient removal through biofilm treatments. https://doi.org/10.20868/UPM.thesis.39458.spa
dc.relation.referencesAFCEE (2008) Technical protocol for enhanced anaerobic bioremediation using permeable mulch biowalls and bioreactors, Technical Directorate, Environmental Science Division. https://www.cluin.org/download/techfocus/prb/Final-Biowall-Protocol-05-08.pdfspa
dc.relation.referencesAhnH, Y. (2006). Sustainable nitrogen elimination biotechnologies: A review. In Process Biochemistry, 41(8), 1709–1721. https://doi.org/10.1016/j.procbio.2006.03.033spa
dc.relation.referencesAragaw, T., (2020). Functions of various bacteria for specific pollutants degradation and their application in wastewater treatment: A review. In International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-020-03022-2spa
dc.relation.referencesAragaw, T., Asmare, A., (2018). Phycoremediation of textile wastewater using indigenous microalgae. In Water Practice & Technology. 13, Issue 2, pp. 274–284. IWA Publishing. https://doi.org/10.2166/wpt.2018.037.spa
dc.relation.referencesAtolia, E., Cesar, S., Arjes, H. A., Rajendram, M., Shi., H., Knapp, B. D., Khare, S., Aranda, A., Lenski, R. E., Huang, K.C., (2020). Environmental and physiological factors affecting high-throughput measurements of bacterial growth. Downloaded from. https://doi.org/10.1128/mBiospa
dc.relation.referencesBaumann, B., Snozzi, M., Zehnder, A. J. B., Roelof, J., (1996). Dynamics of Denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. In Journal of Bacteriology Vol. 178, Issue 15. http://jb.asm.org/spa
dc.relation.referencesBedoya, C., 2012. study of the nitrification and denitrification process via nitrite for the biological treatment of waste water currents with high ammonia nitrogen load. https://doi.org/10.4995/Thesis/10251/17653spa
dc.relation.referencesBaird, R., & Bridgewater, L. (2017). Standard methods for the examination of water and wastewater (23rd ed.). American Public Health Association.spa
dc.relation.referencesCamargo, J. A., Alonso, Á, (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. In Environment International. 32, Issue 6, pp. 831–849. Elsevier Ltd. https://doi.org/10.1016/j.envint.2006.05.002spa
dc.relation.referencesCárdenas, G., Sánchez, I., (2013) Nitrogen in wastewater: Origins, effects and removal mechanisms to preserve the environment and public health. 15, Issue 1.spa
dc.relation.referencesCervantes, F., Pérez, J., Gómez, J, (2000). Advances in the biological elimination of nitrogen from wastewater. Latin American Journal of Microbiology, 42, 73–82. https://www.medigraphic.com/pdfs/lamicro/mi-2000/mi002e.pdfspa
dc.relation.referencesCockburn, A., Heppner, W., Dorne, M., (2014). Environmental contaminants: Nitrate and nitrite. In Encyclopedia of Food Safety 2, pp. 332–336. Elsevier. https://doi.org/10.1016/B978-0-12-378612-8.00199-2spa
dc.relation.referencesDe Laia, G., Tosta dos Reis, J., Ferrei, A., and Silva, F., (2019). Methodology for minimum nitrogen compounds removal efficiencies estimation and wastewater treatment systems pre-selection: A watershed approach. Brazilian Journal of Water Resources.https://doi.org/10.1590/2318-0331.241920180173spa
dc.relation.referencesDennis, M. J., Wilson, L. A. 2003. Nitrates and nitrites. In Encyclopedia of food sciences and nutrition pp. 4136–4141. Elsevier. https://doi.org/10.1016/b0-12-227055-x/00830-0spa
dc.relation.referencesEkama, G. A. (2011). Biological nutrient removal. Treatise on Water Science, 4(August), 409–526. https://doi.org/10.1016/B978-0-444-53199-5.00094-4spa
dc.relation.referencesEliašová, A., Hrivnák, R., Štefánová, P., Svitok, M., Kochjarová, J., Oťaheľová, H., Novikmec, M., & Palove, P. (2021). Effects of ammonium levels on growth and accumulation of antioxidative flavones of the submerged macrophyte Ceratophyllum demersum. Aquatic Botany, 10, 33–76. https://doi.org/10.1016/j.aquabot.2021.103376spa
dc.relation.referencesEPA. (2000). Wastewater technology fact sheet package plants. Packing plants. Washington DC: URL for the United States Environmental Protection Agency (EPA). https://www.epa.gov/npdes/pubs/package_plant.pdfspa
dc.relation.referencesFan, A. M. (2014). Nitrate. Encyclopedia of Toxicology. Elsevier., 3, 523–527. https://doi.org/10.1016/B978-0-12-386454-3.01067-8spa
dc.relation.referencesFan, A.M., (2019). Health, exposure and regulatory implications of nitrate and nitrite in drinking water. Encyclopedia of Environmental Health. Elsevier. 417-435. https://doi.org/10.1016/B978-0-12-409548-9.11837-8spa
dc.relation.referencesGarcía, S.C., (2011). Bacterias simbióticas fijadoras de nitrógeno. In CT. 3, 173–186. https://dialnet.unirioja.es/servle.t/articulo?codigo=3761553.spa
dc.relation.referencesGarrido, J., Paredes, R., Alonso, B., (2019. Elimination of nitrogenous compounds in wastewater by nitrification and denitrification. https://hdl.handle.net/11673/48774.spa
dc.relation.referencesGealt, M.A., Levin, M.A., (1993). Biotreatment of industrial and hazardous waste. McGraw-Hill. //catalog.hathitrust.org/Record/002710706.spa
dc.relation.referencesHerrero, M., & Stuckey, D. C. (2015). Bioaugmentation and its application in wastewater treatment: A review. Chemosphere, 140, 119–128. https://doi.org/10.1016/j.chemosphere.2014.10.033spa
dc.relation.referencesHiren, P.K., (1997). Ammonia reduction through bioaugmentation. http://www.labamerex.com/images/1997-Proteccion-ambiental-Triverdi-MSChE.pdf.spa
dc.relation.referencesHong, P., Wu, X., Shu, Y., Wang, C., Tian, C., Wu, H., Xiao, B., 2020.Bioaugmentation treatment of nitrogen-rich wastewater with a denitrifier with biofilm-formation and nitrogen-removal capacities in a sequencing batch biofilm reactor. Bioresource Technology. 303https://doi.org/10.1016/j.biortech.2020.122905spa
dc.relation.referencesIDEAM. (2017). Ideam water monitoring protocol (N. Vargas, T. Tetaty, and A. Vesga, Eds.). http://documentacion.ideam.gov.co/openbiblio/bvirtual/023773/PROTOCOLO_MONITOREO_AGUA_IDEAM.pdfspa
dc.relation.referencesIDEAM (2019). National water study 2018. Bogotá: Ideam: 452 pp. http://www.andi.com.co/Uploads/ENA_2018-comprimido.pdfspa
dc.relation.referencesIgiri BE et al (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Journal of Toxicology.https://doi.org/10.1155/2018/2568038spa
dc.relation.referencesIpuz, A., and Reyes, M., (2015). Design, construction and start-up of an anaerobic piston flow reactor (RAP) with Guadua as a support medium, for the treatment of domestic wastewater from a workers' camp of a fish farm. https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria.spa
dc.relation.referencesJaibiba, P., Naga, S., Hariharan, S., (2020). Working principle of typical bioreactors. Bioreactors. 145-173https://doi.org/10.1016/b978-0-12-821264-6.00010-3spa
dc.relation.referencesJia, L., Jiang, B., Huang, F., and Hu, X. (2019). Nitrogen removal mechanism and microbial community changes of bioaugmentation subsurface wastewater infiltration system. Bioresource Technology, 294https://doi.org/10.1016/j.biortech.2019.122140spa
dc.relation.referencesJohn, E.M., Krishnapriya, K., Sankar, T.V., 2020.Treatment of ammonia and nitrite in aquaculture wastewater by an assembled bacterial consortium. Aquaculture. 526https://doi.org/10.1016/j.aquaculture.2020.735390spa
dc.relation.referencesKallistova, A. Y., Dorofeev, A. G., Nikolaev, Y. A., Kozlov, M. N., Kevbrina, M. V., & Pimenov, N. V. (2016). Role of anammox bacteria in removal of nitrogen compounds from wastewater. Microbiology Russian Federation., 85, 140–156. https://doi.org/10.1134/S0026261716020089spa
dc.relation.referencesLee, S. I., Weon, S. Y., Lee, C. W., & Koopman, B. (2003). Removal of nitrogen and phosphate from wastewater by addition of bittern. Chemosphere, 51, 265–271. https://doi.org/10.1016/S0045-6535(02)00807-Xspa
dc.relation.referencesLi, W., Cai, Z., Duo, Z. J., Lu, Y. F., Gao, K. X., Abbas, G., Zhang, M., & Zheng, P. (2017). Heterotrophic ammonia and nitrate bio-removal over nitrite (Hanbon): Performance and microflora. Chemosphere, 182, 532–538. https://doi.org/10.1016/j.chemosphere.2017.05.068spa
dc.relation.referencesLiu, S., (2017). Ideal flow reactors. Bioprocess Engineering. 179-257.https://doi.org/10.1016/b978-0-444-63783-3.00005-8spa
dc.relation.referencesLópez, C., Buitrón, G., García, H., Cervantes, F., 2017. Biological wastewater treatment: Principles, modeling and design. Cambridge University Press. https://doi.org/10.2166/9781780409146spa
dc.relation.referencesLucena, J., Schneider, J., & Leydens, J. A. (2010). Engineering and sustainable community development. Synthesis Lectures on Engineers, Technology, and Society, 11, 1–230. https://doi.org/10.2200/S00247ED1V01Y201001ETS011spa
dc.relation.referencesMažeikienė, A., Grubliauskas, R., (2021). Biotechnological wastewater treatment in small-scale wastewater treatment plants. Journal of Cleaner Production. 279.https://doi.org/10.1016/j.jclepro.2020.123750spa
dc.relation.referencesMetcalf, E., Asano, T., Burton, F., Leverenz, H., 2007. Water reuse: Issues, technologies, and applications. McGraw-Hill Education. https://www.accessengineeringlibrary.com/content/book/9780071459273.spa
dc.relation.referencesMytilinaios, I., Bernigaud, I., Belot, V., & Lambert, R. J. (2015). Microbial growth parameters obtained from the analysis of time to detection data using a novel rearrangement of the Baranyi-Roberts model. Journal of Applied Microbiology., 118, 161–174. https://doi.org/10.1111/jam.12695spa
dc.relation.referencesNiño, E.D., Martínez, N.C., (2013). Study of domestic gray water in three socioeconomic levels of the city of Bogotá. Pontifical Javeriana University. http://hdl.handle.net/10554/11139 .spa
dc.relation.referencesNzila, A., Razzak, S.A., Zhu, J., 2016. Bioaugmentation: An emerging strategy of industrial wastewater treatment for reuse and discharge. International Journal of Environmental Research and Public Health. 13.https://doi.org/10.3390/ijerph13090846spa
dc.relation.referencesOkoduwa, S. I. R., et al. (2017). Tannery effluent treatment by yeast species isolates from watermelon. Toxics, 5, 6. https://doi.org/10.3390/toxics5010006spa
dc.relation.referencesOrellana, R., et al. (2018). Living at the frontiers of life: Extremophiles in Chile and their potential for bioremediation. Frontiers in Microbiology, 9, 2309. https://doi.org/10.3389/fmicb.2018.02309spa
dc.relation.referencesPal, P., (2017).Biological treatment technology. Industrial Water Treatment Process Technology. 65-144.https://doi.org/10.1016/b978-0-12-810391-3.00003-5spa
dc.relation.referencesPeñafiel, R. D., Moreno, C., Ochoa-Herrera, V. D. L. (2016). Eliminación de nitrógeno y contaminación orgánica de agua residual industrial pretratada en lagunas anaeróbicas mediante un biofiltro de arena. Avances En Ciencias e Ingeniería, -8–14. https://doi.org/10.18272/aci.v8i1.299spa
dc.relation.referencesPérez-Uz, B., Arregui, L., Calvo, P., Salvadó, H., Fernández, N., Rodríguez, E., Zornoza, A., & Serrano, S. (2010). Assessment of plausible bioindicators for plant performance in advanced wastewater treatment systems. Water Research, 17, 5059–5069. https://doi.org/10.1016/j.watres.2010.07.024spa
dc.relation.referencesPillai, N. N., Wheeler, W. C., and Prince, R. P. (1971). Design and operation of an extended aeration plant. Journal (Water Pollution Control Federation), 7, 1484–1498. http://www.jstor.org/stable/25037127spa
dc.relation.referencesRamakrishnan VV, G. A. 2015. Nitrogen sources and cycling in the ecosystem and its role in air, water and soil pollution: A critical review. Journal of Pollution Effects and Control, 02 https://doi.org/10.4172/2375-4397.1000136spa
dc.relation.referencesRamos, A. F., Gómez, M. A., Hontoria, E., & González-López, J. (2007). Biological nitrogen and phenol removal from saline industrial wastewater by submerged fixed-film reactor. Journal of Hazardous Materials, 142(1–2), 175–183. https://doi.org/10.1016/j.jhazmat.2006.08.079spa
dc.relation.referencesRaper, E., Stephenson, T., Anderson, D. R., Fisher, R., Soares, A. (2018). Industrial wastewater treatment through bioaugmentation. In Process Safety and Environmental Protection (Vol. 118, pp. 178–187. Institution of Chemical Engineers. https://doi.org/10.1016/j.psep.2018.06.035spa
dc.relation.referencesRathna, R., Nakkeeran, E., (2020). The intertwined facets of membrane technology for industrial effluents. In Biovalorisation of Wastes to Renewable Chemicals and Biofuels pp. 133–147. Elsevier. https://doi.org/10.1016/b978-0-12-817951-2.00007-9spa
dc.relation.referencesRuscalleda, M., Balaguer, M.D., Colprim, J., Pellicer-Nàcher, C., Smets, S. P., (2011). Biological nitrogen removal from domestic wastewater. In Comprehensive biotechnology, second edition (Vol. 6, pp. 329–340. Elsevier Inc. https://doi.org/10.1016/B978-0-08-088504-9.00533-Xspa
dc.relation.referencesSamer M (2015) Biological and chemical wastewater treatment processes. In: Wastewater treatment engineering, InTech, pp 1–50.spa
dc.relation.referencesSepehri, A., Sarrafzadeh, M. H., Avateffazeli, M. (2020). Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. Journal of Cleaner Production, 247. https://doi.org/10.1016/j.jclepro.2019.119164spa
dc.relation.referencesShapleigh, J. P. (2013). Denitrifying prokaryotes. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, and F. Thompson (Eds.), The prokaryotes: Prokaryotic physiology and biochemistry pp. 405–425. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30141-4_71spa
dc.relation.referencesSotres, A., Cerrillo, M., Viñas, M., & Bonmatí, A. (2016). Nitrogen removal in a two-chambered microbial fuel cell: Establishment of a nitrifying-denitrifying microbial community on an intermittent aerated cathode. Chemical Engineering Journal, 284, 905–916. https://doi.org/10.1016/j.cej.2015.08.100spa
dc.relation.referencesSuárez Oquedo Victor. (2019). Analysis of alternatives for the elimination of nutrients in the WWTP “La Poveda” (Rivas-VaciaMadrid, Madrid). Retrieved from https://pdfs.semanticscholar.org/def5/7d1f16f271995bfb5fdc085165b76d5a3677.pdfspa
dc.relation.referencesVenegas, C. (2015). Biological removal of nutrients in high nitrogen ammoniacal wastewater using a biological sequencing reactor. Retrieved from URL: http://hdl.handle.net/10902/8451spa
dc.relation.referencesYang, N., Liu, H., Zhan, G. qiang, Li, D. ping. (2020). Sustainable ammonia-contaminated wastewater treatment in heterotrophic nitrifying/denitrifying microbial fuel cell. Journal of Cleaner Production, 245.https://doi.org/10.1016/j.jclepro.2019.118923spa
dc.relation.referencesZornoza, A., Avendaño, L., Aguado, D., Borrás, L., & Alonso, J. L. (2012). Analysis of the correlations between the abundance of nitrifying bacteria, operational and physicochemical parameters related to the biological process of nitrification in activated sludge.spa
dc.relation.referencesZornoza, A., Alonso-Molina, J. L., Serrano, S. (2010). New metagenomics and molecular based tools for European scale identification and control of emergent microbial contaminants in irrigation water. View project. https://www.researchgate.net/publication/234154599spa
dc.relation.referencesZou, S., Guan, L., Taylor, D. P., Kuhn, D., & He, Z. (2018). Nitrogen removal from water of recirculating aquaculture system by a microbial fuel cell. Aquaculture, 497, 74–81. https://doi.org/10.1016/j.aquaculture.2018.07.036spa
dc.subject.proposalBioaugmentationeng
dc.subject.proposalNitrogen compoundseng
dc.subject.proposalBacterial consortiumeng
dc.subject.proposalDenitrifcationeng
dc.subject.proposalNitrifcationeng
dc.subject.proposalWater resource managementeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationissue339spa
dc.relation.citationvolume233spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

© The Author(s) 2022
Excepto si se señala otra cosa, la licencia del ítem se describe como © The Author(s) 2022