Mostrar el registro sencillo del ítem

dc.rights.licenseAtribución 4.0 Internacional (CC BY 4.0)spa
dc.contributor.authorNiu, Hongya
dc.contributor.authorZhang, Chongchong
dc.contributor.authorHu, Wei
dc.contributor.authorHu, Tafeng
dc.contributor.authorWen, Chunmiao
dc.contributor.authorHu, Sihao
dc.contributor.authorSilva Oliveira, Luis Felipe
dc.contributor.authorGao, Nana
dc.contributor.authorbao, xiaolei
dc.contributor.authorFan, Jingsen
dc.date.accessioned2022-11-17T21:11:32Z
dc.date.available2022-11-17T21:11:32Z
dc.date.issued2022-09-14
dc.identifier.citationNiu, H.; Zhang, C.; Hu, W.; Hu, T.; Wu, C.; Hu, S.; Silva, L.F.O.; Gao, N.; Bao, X.; Fan, J. Air Quality Changes during the COVID-19 Lockdown in an Industrial City in North China: Post-Pandemic Proposals for Air Quality Improvement. Sustainability 2022, 14, 11531. https://doi.org/10.3390/ su141811531spa
dc.identifier.urihttps://hdl.handle.net/11323/9626
dc.description.abstractTo better understand the changes in air pollutants in an industrial city, Handan, North China, during the COVID-19 lockdown period, the air quality and meteorological conditions were recorded from 1 January to 3 March 2020 and the corresponding period in 2019. Compared to the corresponding period in 2019, the largest reduction in PM2.5–10, PM2.5, NO2 and CO occurred during the COVID-19 lockdown period. PM2.5–10 displayed the highest reduction (66.6%), followed by NO2 (58.4%) and PM2.5 (50.1%), while O3 increased by 13.9%. Similarly, compared with the pre-COVID-19 period, NO2 significantly decreased by 66.1% during the COVID-19 lockdown, followed by PM2.5–10 (45.9%) and PM2.5 (42.4%), while O3 increased significantly (126%). Among the different functional areas, PM2.5 and PM2.5–10 dropped the most in the commercial area during the COVID-19 lockdown. NO2 and SO2 decreased the most in the traffic and residential areas, respectively, while NO2 increased only in the township and SO2 increased the most in the industrial area. O3 increased in all functional areas to different extents. Potential source contribution function analysis indicated that not only the local air pollution lessened, but also long-distance or inter-regional transport contributed much less to heavy pollution during the lockdown period. These results indicate that the COVID-19 lockdown measures led to significantly reduced PM and NO2 but increased O3 , highlighting the importance of the synergetic control of PM2.5 and O3 , as well as regional joint prevention and the control of air pollution. Moreover, it is necessary to formulate air pollution control measures according to functional areas on a city scale.eng
dc.format.extent19 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherMDPI AGspa
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2071-1050/14/18/11531spa
dc.titleAir quality changes during the COVID-19 lockdown in an industrial city in North China: post-pandemic proposals for air quality improvementeng
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.3390/ su141811531
dc.identifier.eissn2071-1050spa
dc.coverage.countryNorth China
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeSwitzerlandspa
dc.relation.ispartofjournalSustainabilityspa
dc.relation.references1. Bu, X.; Xie, Z.; Liu, J.; Wei, L.; Wang, X.; Chen, M.; Ren, H. Global PM2.5 attributable health burden from 1990 to 2017: Estimates from the Global Burden of disease study 2017. Environ. Res. 2021, 197, 111123. [CrossRef] [PubMed]spa
dc.relation.references2. Cheng, J.; Su, J.; Cui, T.; Li, X.; Dong, X.; Sun, F.; Yang, Y.; Tong, D.; Zheng, Y.; Li, Y.; et al. Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013–2017: A model-based decomposition analysis. Atmos. Chem. Phys. 2019, 19, 6125–6146. [CrossRef]spa
dc.relation.references3. Yan, D.; Lei, Y.; Shi, Y.; Zhu, Q.; Li, L.; Zhang, Z. Evolution of the spatiotemporal pattern of PM2.5 concentrations in China-a case study from the Beijing-Tianjin-Hebei region. Atmos. Environ. 2018, 183, 225–233. [CrossRef]spa
dc.relation.references4. Zeng, J.J.; Liu, T.; Feiock, R.; Li, F. The impacts of China’s provincial energy policies on major air pollutants: A spatial econometric analysis. Energy Policy 2019, 132, 392–403. [CrossRef]spa
dc.relation.references5. Xue, F.; Niu, H.; Hu, S.; Wu, C.; Zhang, C.; Gao, N.; Ren, X.; Li, S.; Hu, W.; Wang, J.; et al. Seasonal variations and source apportionment of carbonaceous aerosol in PM2.5 from a coal mining city in the North China Plain. Energy Explor. Exploit. 2021, 40, 834–851. [CrossRef]spa
dc.relation.references6. Song, X.; Jia, J.; Wu, F.; Niu, H.; Ma, Q.; Guo, B.; Shao, L.; Zhang, D. Local emissions and secondary pollutants cause severe PM2.5 elevation in urban air at the south edge of the North China Plain: Results from winter haze of 2017–2018 at a mega city. Sci. Total Environ. 2021, 802, 149630. [CrossRef]spa
dc.relation.references7. Chen, S.; Yang, J.; Yang, W.; Wang, C.; Bärnighausen, T. COVID-19 control in China during mass population movements at New Year. Lancet 2020, 395, 764–766. [CrossRef]spa
dc.relation.references8. Wang, Y.; Wen, Y.; Wang, Y.; Zhang, S.; Zhang, K.M.; Zheng, H.; Xing, J.; Wu, Y.; Hao, J. Four-month changes in air quality during and after the COVID-19 lockdown in six megacities in China. Environ. Sci. Technol. Lett. 2020, 7, 802–808. [CrossRef]spa
dc.relation.references9. Tian, H.; Liu, Y.; Li, Y.; Wu, C.H.; Chen, B.; Kraemer, M.U.G.; Li, B.; Cai, J.; Xu, B.; Yang, Q.; et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 2020, 368, 638–642. [CrossRef]spa
dc.relation.references10. Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [CrossRef]spa
dc.relation.references11. Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Wang, J.; Ren, C.; Nie, W.; et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl. Sci. Rev. 2021, 8, nwaa137. [CrossRef]spa
dc.relation.references12. Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total Environ. 2020, 728, 138813. [CrossRef]spa
dc.relation.references13. Shi, X.; Brasseur, G.P. The response in air quality to the reduction of Chinese economic activities during the COVID-19 outbreak. Geophys. Res. Lett. 2020, 47, e2020GL088070. [CrossRef]spa
dc.relation.references14. Adam, M.G.; Tran, P.T.M.; Balasubramanian, R. Air quality changes in cities during the COVID-19 lockdown: A critical review. Atmos. Res. 2021, 264, 105823. [CrossRef]spa
dc.relation.references15. Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [CrossRef]spa
dc.relation.references16. Rahman, M.M.; Paul, K.C.; Hossain, M.A.; Ali, G.G.M.N.; Rahman, M.S.; Thill, J.C. Machine learning on the COVID-19 pandemic, human mobility and air quality: A review. IEEE Access 2021, 9, 72420–72450. [CrossRef]spa
dc.relation.references17. Gamelas, C.; Abecasis, L.; Canha, N.; Almeida, S.M. The Impact of COVID-19 Confinement Measures on the Air Quality in an Urban-Industrial Area of Portugal. Atmosphere 2021, 12, 1097. [CrossRef]spa
dc.relation.references18. Ropkins, K.; Tate, J.E. Early observations on the impact of the COVID-19 lockdown on air quality trends across the UK. Sci. Total Environ. 2021, 754, 142374. [CrossRef]spa
dc.relation.references19. Wang, Q.; Li, S. Nonlinear impact of COVID-19 on pollutions—Evidence from Wuhan, New York, Milan, Madrid, Bandra, London, Tokyo and Mexico City. Sustain. Cities Soc. 2021, 65, 102629. [CrossRef]spa
dc.relation.references20. Kroll, J.H.; Heald, C.L.; Cappa, C.D.; Farmer, D.K.; Fry, J.L.; Murphy, J.G.; Steiner, A.L. The complex chemical effects of COVID-19 shutdowns on air quality. Nat. Chem. 2020, 12, 777–779. [CrossRef]spa
dc.relation.references21. He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [CrossRef]spa
dc.relation.references22. Lian, X.; Huang, J.; Huang, R.; Liu, C.; Wang, L.; Zhang, T. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city. Sci. Total Environ. 2020, 742, 140556. [CrossRef]spa
dc.relation.references23. Hu, X.; Liu, Q.; Fu, Q.; Xu, H.; Shen, Y.; Liu, D.; Wang, Y.; Jia, H.; Cheng, J. A high-resolution typical pollution source emission inventory and pollution source changes during the COVID-19 lockdown in a megacity, China. Environ. Sci. Pollut. Res. 2021, 28, 45344–45352. [CrossRef]spa
dc.relation.references24. Zhang, K.; de Leeuw, G.; Yang, Z.; Chen, X.; Jiao, J. The impacts of the COVID-19 lockdown on air quality in the Guanzhong Basin, China. Remote Sens. 2020, 12, 3042. [CrossRef]spa
dc.relation.references25. Wang, H.; Tan, Y.; Zhang, L.; Shen, L.; Zhao, T.; Dai, Q.; Guan, T.; Ke, Y.; Li, X. Characteristics of air quality in different climatic zones of China during the COVID-19 lockdown. Atmos. Pollut. Res. 2021, 12, 101247. [CrossRef]spa
dc.relation.references26. Pei, Z.; Han, G.; Ma, X.; Su, H.; Gong, W. Response of major air pollutants to COVID-19 lockdowns in China. Sci. Total Environ. 2020, 743, 140879. [CrossRef]spa
dc.relation.references27. Niu, H.; Wu, Z.; Xue, F.; Liu, Z.; Hu, W.; Wang, J.; Fan, J.; Lu, Y. Seasonal variations and risk assessment of heavy metals in PM from Handan, China. World J. Eng. 2021, 18, 886–897. [CrossRef]spa
dc.relation.references28. Polissar, A.V.; Hopke, P.K.; Paatero, P.; Kaufmann, Y.J.; Hall, D.K.; Bodhaine, B.A.; Dutton, E.G.; Harris, J.M. The aerosol at Barrow, Alaska: Long-term trends and source locations. Atmos. Environ. 1999, 33, 2441–2458. [CrossRef]spa
dc.relation.references29. Abbott, M.L.; Lin, C.J.; Martian, P.; Einerson, J.J. Atmospheric mercury near Salmon Falls Creek Reservoir in southern Idaho. Appl. Geochem. 2008, 23, 438–453. [CrossRef]spa
dc.relation.references30. Xu, X.; Akhtar, U. Identification of potential regional sources of atmospheric total gaseous mercury in Windsor, Ontario, Canada using hybrid receptor modeling. Atmos. Chem. Phys. 2010, 10, 7073–7083. [CrossRef]spa
dc.relation.references31. Cheng, M.D.; Lin, C.J. Receptor modeling for smoke of 1998 biomass burning in Central America. J. Geophys. Res. 2001, 106, 22871–22886. [CrossRef]spa
dc.relation.references32. Qiao, Z.; Wu, F.; Xu, X.; Yang, J.; Liu, L. Mechanism of spatiotemporal air quality response to meteorological parameters: A national-scale analysis in China. Sustainability 2019, 11, 3957. [CrossRef]spa
dc.relation.references33. Pateraki, S.; Asimakopoulos, D.N.; Flocas, H.A.; Maggos, T.; Vasilakos, C. The role of meteorology on different sized aerosol fractions (PM10, PM2.5, PM2.5-10). Sci. Total Environ. 2012, 419, 124–135. [CrossRef] [PubMed]spa
dc.relation.references34. Wang, Y.; Liu, C.; Wang, Q.; Qin, Q.; Ren, H.; Cao, J. Impacts of natural and socioeconomic factors on PM2.5 from 2014 to 2017. J. Environ. Manag. 2021, 284, 112071. [CrossRef]spa
dc.relation.references35. Hu, W.; Hu, M.; Hu, W.W.; Zheng, J.; Chen, C.; Wu, Y.; Guo, S. Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing. Atmos. Chem. Phys. 2017, 17, 9979–10000. [CrossRef]spa
dc.relation.references36. Liu, F.; Zhang, G.; Lian, X.; Fu, Y.; Lin, Q.; Yang, Y.; Bi, X.; Wang, X.; Peng, P.; Sheng, G. Influence of meteorological parameters and oxidizing capacity on characteristics of airborne particulate amines in an urban area of the Pearl River Delta, China. Environ. Res. 2022, 212, 113212. [CrossRef]spa
dc.relation.references37. Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [CrossRef]spa
dc.relation.references38. Zhang, X.; Xu, X.; Ding, Y.; Liu, Y.; Zhang, H.; Wang, Y.; Zhong, J. The impact of meteorological changes from 2013 to 2017 on PM2.5 mass reduction in key regions in China. Sci. China Earth Sci. 2019, 62, 1885–1902. [CrossRef]spa
dc.relation.references39. Xing, J.; Li, S.; Jiang, Y.; Wang, S.; Ding, D.; Dong, Z.; Zhu, Y.; Hao, J. Quantifying the emission changes and associated air quality impacts during the COVID-19 pandemic on the North China Plain: A response modeling study. Atmos. Chem. Phys. 2020, 20, 14347–14359. [CrossRef]spa
dc.relation.references40. Li, R.; Zhao, Y.; Fu, H.; Chen, J.; Peng, M.; Wang, C. Substantial changes in gaseous pollutants and chemical compositions in fine particles in the North China Plain during the COVID-19 lockdown period: Anthropogenic vs meteorological influences. Atmos. Chem. Phys. 2021, 21, 8677–8692. [CrossRef]spa
dc.relation.references41. Chu, B.; Zhang, S.; Liu, J.; Ma, Q.; He, H. Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic. J. Environ. Sci. 2021, 99, 346–353. [CrossRef]spa
dc.relation.references42. Yuan, Q.; Qi, B.; Hu, D.; Wang, J.; Zhang, J.; Yang, H.; Zhang, S.; Liu, L.; Xu, L.; Li, W. Spatiotemporal variations and reduction of air pollutants during the COVID-19 pandemic in a megacity of Yangtze River Delta in China. Sci. Total Environ. 2021, 751, 141820. [CrossRef]spa
dc.relation.references43. Ding, J.; Dai, Q.; Li, Y.; Han, S.; Zhang, Y.; Feng, Y. Impact of meteorological condition changes on air quality and particulate chemical composition during the COVID-19 lockdown. J. Environ. Sci. 2021, 109, 45–56. [CrossRef]spa
dc.relation.references44. Liu, L.; Zhang, J.; Du, R.; Teng, X.; Hu, R.; Yuan, Q.; Tang, S.; Ren, C.; Huang, X.; Xu, L.; et al. Chemistry of atmospheric fine particles during the COVID-19 pandemic in a megacity of eastern China. Geophys. Res. Lett. 2021, 48, 2020GL091611. [CrossRef]spa
dc.relation.references45. Xu, M.; Qin, Z.; Zhang, S. Integrated assessment of cleaning air policy in China: A case study for Beijing-Tianjin-Hebei region. J. Clean. Prod. 2021, 296, 126596. [CrossRef]spa
dc.relation.references46. Wu, Z.; Hu, T.; Hu, W.; Shao, L.; Sun, Y.; Xue, F.; Niu, H. Evolution in physico-chemical properties of fine particles emitted from residential coal combustion based on chamber experiment. Gondwana Res. 2022, 110, 252–263. [CrossRef]spa
dc.relation.references47. Hu, B.; Duan, J.; Liu, S.; Hu, J.; Zhang, M.; Kang, P.; Wang, C. Evaluation of the Effect of Fireworks Prohibition in the BeijingTianjin-Hebei and Surrounding Areas during the Spring Festival of 2018. Res. Environ. Sci. 2019, 32, 203–211.spa
dc.relation.references48. Xian, T.; Li, Z.; Wei, J. Changes in air pollution following the COVID-19 epidemic in Northern China: The role of meteorology. Front. Environ. Sci. 2021, 9, 654651. [CrossRef]spa
dc.relation.references49. He, Z.; Liu, P.; Zhao, X.; He, X.; Liu, J.; Mu, Y. Responses of surface O3 and PM2.5 trends to changes of anthropogenic emissions in summer over Beijing during 2014-2019: A study based on multiple linear regression and WRF-Chem. Sci. Total Environ. 2021, 807, 150792. [CrossRef]spa
dc.relation.references50. Wu, C.L.; Wang, H.W.; Cai, W.J.; He, H.D.; Ni, A.N.; Peng, Z.R. Impact of the COVID-19 lockdown on roadside traffic-related air pollution in Shanghai, China. Build. Environ. 2021, 194, 107718. [CrossRef]spa
dc.relation.references51. Liu, Y.; Wang, T.; Stavrakou, T.; Elguindi, N.; Doumbia, T.; Granier, C.; Bouarar, I.; Gaubert, B.; Brasseur, G.P. Diverse response of surface ozone to COVID-19 lockdown in China. Sci. Total Environ. 2021, 789, 147739. [CrossRef] [PubMed]spa
dc.relation.references52. Guo, X.; Wu, H.; Chen, D.; Ye, Z.; Shen, Y.; Liu, J.; Cheng, S. Estimation and prediction of pollutant emissions from agricultural and construction diesel machinery in the Beijing-Tianjin-Hebei (BTH) region, China. Environ. Pollut. 2020, 260, 113973. [CrossRef]spa
dc.relation.references53. Zhang, L.; An, J.; Liu, M.; Li, Z.; Liu, Y.; Tao, L.; Liu, X.; Zhang, F.; Zheng, D.; Gao, Q.; et al. Spatiotemporal variations and influencing factors of PM2.5 concentrations in Beijing, China. Environ. Pollut. 2020, 262, 114276. [CrossRef]spa
dc.relation.references54. Zheng, X.; Guo, B.; He, J.; Chen, S.X. Effects of corona virus disease-19 control measures on air quality in North China. Environmetrics 2021, 32, e2673. [CrossRef]spa
dc.relation.references55. Sokhi, R.S.; Singh, V.; Querol, X.; Finardi, S.; Targino, A.C.; Andrade, M.F.; Pavlovic, R.; Garland, R.M.; Massague, J.; Kong, S.; et al. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environ. Int. 2021, 157, 106818. [CrossRef]spa
dc.relation.references56. Hassler, B.; McDonald, B.C.; Frost, G.J.; Borbon, A.; Carslaw, D.C.; Civerolo, K.; Granier, C.; Monks, P.S.; Monks, S.; Parrish, D.D.; et al. Analysis of long-term observations of NOx and CO in megacities and application to constraining emissions inventories. Geophys. Res. Lett. 2016, 43, 9920–9930. [CrossRef]spa
dc.relation.references57. Bai, Y.; Wang, Z.; Xie, F.; Cen, L.; Xie, Z.; Zhou, X.; He, J.; Lu, C. Changes in stoichiometric characteristics of ambient air pollutants pre-to post-COVID-19 in China. Environ. Res. 2022, 209, 112806. [CrossRef]spa
dc.relation.references58. Zhang, Q.; Jiang, X.; Tong, D.; Davis, S.J.; Zhao, H.; Geng, G.; Feng, T.; Zheng, B.; Lu, Z.; Streets, D.G.; et al. Transboundary health impacts of transported global air pollution and international trade. Nature 2017, 543, 705–709. [CrossRef]spa
dc.relation.references59. Ostro, B.; World Health Organization/Occupational Environmental Health Team. Outdoor Air Pollution: Assessing the Environmental Burden of Disease at National and Local Levels; World Health Organization: Geneva, Switzerland, 2004.spa
dc.relation.references60. Zha, H.; Wang, R.; Feng, X.; An, C.; Qian, J. Spatial characteristics of the PM2.5/PM10 ratio and its indicative significance regarding air pollution in Hebei Province, China. Environ. Monit. Assess. 2021, 193, 486. [CrossRef]spa
dc.relation.references61. Fu, S.; Guo, M.; Fan, L.; Deng, Q.; Han, D.; Wei, Y.; Luo, J.; Qin, G.; Cheng, J. Ozone pollution mitigation in guangxi (south China) driven by meteorology and anthropogenic emissions during the COVID-19 lockdown. Environ. Pollut. 2021, 272, 115927. [CrossRef]spa
dc.relation.references62. Chang, X.; Wang, S.; Zhao, B.; Xing, J.; Liu, X.; Wei, L.; Song, Y.; Wu, W.; Cai, S.; Zheng, H.; et al. Contributions of inter-city and regional transport to PM2.5 concentrations in the Beijing-Tianjin-Hebei region and its implications on regional joint air pollution control. Sci. Total Environ. 2019, 660, 1191–1200. [CrossRef] [PubMed]spa
dc.relation.references63. Zhang, Y.; Zhu, B.; Gao, J.; Kang, H.; Yang, P.; Wang, L.; Zhang, J. The Source Apportionment of Primary PM2.5 in an Aerosol Pollution Event over Beijing-Tianjin-Hebei Region using WRF-Chem, China. Aerosol Air Qual. Res. 2017, 17, 2966–2980. [CrossRef]spa
dc.relation.references64. Cheng, Y.; Zhu, B.; Wang, L.; Lu, W.; Kang, H.; Gao, J. Source apportionments of black carbon induced by local and regional transport in the atmospheric boundary layer of the Yangtze River Delta under stable weather conditions. Sci. Total Environ. 2022, 840, 156517. [CrossRef] [PubMed]spa
dc.subject.proposalCOVID-19 lockdowneng
dc.subject.proposalIndustrial cityeng
dc.subject.proposalAir qualityeng
dc.subject.proposalPotential source contribution functioneng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationendpage19spa
dc.relation.citationstartpage1spa
dc.relation.citationissue18spa
dc.relation.citationvolume14spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional (CC BY 4.0)