Mostrar el registro sencillo del ítem

dc.rights.licenseAtribución 4.0 Internacional (CC BY 4.0)spa
dc.contributor.authordiaz torres, yamile
dc.contributor.authorGullo, Paride
dc.contributor.authorHernández Herrera, Hernán
dc.contributor.authorTorres del Toro, Migdalia
dc.contributor.authorÁlvarez Guerra, Mario A.
dc.contributor.authorSilva Ortega, Jorge I
dc.contributor.authorSpeerforck, Arne
dc.date.accessioned2023-01-30T14:33:39Z
dc.date.available2023-01-30T14:33:39Z
dc.date.issued2022-08-16
dc.identifier.citation: Torres, Y.D.; Gullo, P.; Herrera, H.H.; Torres del Toro, M.; Guerra, M.A.Á.; Ortega, J.I.S.; Speerforck, A. Statistical Analysis of Design Variables in a Chiller Plant and Their Influence on Energy Consumption and Life Cycle Cost. Sustainability 2022, 14, 10175. https://doi.org/10.3390/su141610175spa
dc.identifier.urihttps://hdl.handle.net/11323/9841
dc.description.abstractAn appropriate design of a chiller plant is crucial to guarantee highly performing solutions. However, several design variables, such as type of systems, total cooling capacity, and hydraulic arrangement, need to be considered. On the one hand, at present, different technical criteria for selecting the most suitable design variables are available. Studies that corroborate the influence of the design variables over the operational variables are missing. In order to fill this knowledge gap, this work proposes a statistical analysis of design variables in chiller plants operating in medium- and large-scale applications and evaluates their influence on energy consumption and life cycle cost (LCC) under the same thermal demand conditions. A case study involving 138 chiller plant combinations featuring different arrangements and a Cuban hotel was selected. The results suggested that the total chiller design and cooling capacity distribution among chillers have a significant influence on the energy consumption of the chiller plant with a Spearman’s Rho and Kendall Tau (τ) correlation index value of −0.625 and 0.559, respectively. However, with LCC, only the cooling capacity distribution among the chillers had a certain influence with a Kendall Tau correlation index value of 0.289. As for the considered total cooling capacity, the applied statistical test showed that this design variable does not have any influence on performing the chiller plant.eng
dc.format.extent19 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherMDPI AGspa
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2071-1050/14/16/10175spa
dc.titleStatistical analysis of design variables in a chiller plant and their influence on energy consumption and life cycle costeng
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.3390/su141610175
dc.identifier.eissn2071-1050spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeSwitzerlandspa
dc.relation.ispartofjournalSustainabilityspa
dc.relation.references1. ASHRAE. Fundamentals Handbook; ASHRAE: Atlanta, GA, USA, 2017; Chapter 18; ISBN 10-1939200598.spa
dc.relation.references2. ASHRAE. Standard 62.2-2016 Ventilation for Acceptable Indoor Air Quality; ASHRAE: Atlanta, GA, USA, 2016; ISSN 1041-2336.spa
dc.relation.references3. Norma Cubana NC 220-3:2009. Edificaciones-Requisitos de Diseño Para la Eficiencia Energética-Parte 3: Sistemas y Equipamiento de Calefaccion, Ventilación y Aire Acondicionado. Oficina Nacional de Normalización (NC). 2009. Available online: www.nc. cubaindustria.cu (accessed on 10 September 2020).spa
dc.relation.references4. Nall, D. Rightsizing HVAC equipment. ASHRAE J. 2015, 57, 1.spa
dc.relation.references5. Ruya, E.; Augenbroe, G. The impacts of HVAC downsizing on thermal comfort hours and energy consumption. In Proceedings of the ASHRAE and IBPSA-USA SimBuild Conference, Salt Lake City, UT, USA, 10–12 August 2016; Volume 6, p. 1.spa
dc.relation.references6. Chang, Y.-C. A novel energy conservation method-optimal Chillers loading. Electr. Power Syst. Res. 2004, 69, 221–226. [CrossRef]spa
dc.relation.references7. Menezes, A.C.; Cripps, A.; Buswell, R.A.; Wright, J.; Bouchlaghem, D. Estimating the energy consumption and power demand of small power equipment in office building. Energy Build. 2014, 75, 199–209. [CrossRef]spa
dc.relation.references8. Wang, W.; Augenbroe, G.; Wang, S.; Fan, C.; Xiao, F. An uncertainty-based design optimization method for district cooling systems. Energy 2016, 102, 516–527.spa
dc.relation.references9. Li, M.; Qin, C.; Feng, Y.; Zhou, M.; Mu, H.; Li, N.; Ma, Q. Optimal design and analysis of CCHP system for a hotel application. Energy Procedia 2017, 142, 2329–2334. [CrossRef]spa
dc.relation.references10. Cheng, Q.; Wang, S.; Yan, C. Sequential Monte Carlo simulation for robust optimal design of cooling water system with quantified uncertainty and reliability. Energy 2017, 118, 489–501. [CrossRef]spa
dc.relation.references11. Gang, W.; Wang, S.; Augenbroe, G.; Xiao, F. Robust optimal design of district cooling systems and the impacts of uncertainty and reliability. Energy Build. 2016, 122, 11–22. [CrossRef]spa
dc.relation.references12. Cheng, Q.; Wang, S.; Yan, C.H.; Xiao, F. Probabilistic approach for uncertainty-based optimal design of chiller plants in buildings. Appl. Energy 2017, 185, 1613–1624. [CrossRef]spa
dc.relation.references13. Kang, Y.; Augenbroe, Q.; Li, W.; Wang, Q. Effects of scenario uncertainty on chiller sizing method. Appl. Therm. Eng. 2017, 123, 187–195. [CrossRef]spa
dc.relation.references14. Huang, P.; Huang, G.; Augenbroe, G.; Li, S. Optimal configuration of multiple-chiller plants under cooling load uncertainty for different climate effects and building types. Energy Build. 2018, 158, 684–697. [CrossRef]spa
dc.relation.references15. Chai, J.; Huang, P.; Sun, Y. Life-cycle analysis of nearly zero energy buildings under uncertainty and degradation impacts for performance improvements. Energy Procedia 2019, 158, 2762–2767. [CrossRef]spa
dc.relation.references16. Liao, Y.; Huang, G.; Ding, Y.; Wu, H.; Feng, Z. Robustness enhancement for chiller sequencing control under uncertainty. Appl. Therm. Eng. 2018, 141, 811–818. [CrossRef]spa
dc.relation.references17. Yan, C.; Cheng, Q.; Cai, H. Life-Cycle optimization of a chiller plant with quantified analysis of uncertainty and reliability in commercial buildings. Appl. Sci. 2019, 9, 1548. [CrossRef]spa
dc.relation.references18. Yu, F.W.; Ho, H.T. Assessing operating statuses for chiller system with Cox regression. Int. J. Refrig. 2019, 98, 182–193. [CrossRef]spa
dc.relation.references19. Chen, Y.; Yang, C.; Pan, X.; Yan, D. Design and operation optimization of multi-chiller plants based on energy performance simulation. Energy Build. 2020, 222, 110100. [CrossRef]spa
dc.relation.references20. Huang, P.; Huang, G.; Sun, Y. Uncertainty-based life-cycle analysis of near-zero energy buildings for performance improvements. Appl. Energy 2018, 213, 486–498. [CrossRef]spa
dc.relation.references21. Vasisht, S.; Bhattacharya, A.; Huang, S.; Sharma, H.; Adetola, V.; Vrabie, D. Co-Design of Commercial Building HVAC using Bayesian Optimization. In Proceedings of the 2021 American Control Conference (ACC), New Orleans, LA, USA, 25–28 May 2021; pp. 366–372.spa
dc.relation.references22. Kapoor, K.; Edgar, T. Chapter 2: Energy efficient chiller configuration. A design Perspective. Comput. Aided Chem. Eng. 2015, 36, 37–52.spa
dc.relation.references23. Stanford, H.W., III. HVAC Water Chillers and Cooling Towers. Fundamentals, Application, and Operation, 2nd ed.; Marcel Dekker, Inc.: New York, NY, USA, 2016; ISBN 0-8247-0992-6.spa
dc.relation.references24. Valentina, S.; Nasri, S.M.; Herespatiagni, R. Analysis of the Effect of HVAC System Modification towards Indoor Air Quality (IAQ) and Microbiological Growth at Accommodation and Office Buildings in an Oil and Gas Industry. J. Presipitasi Media Komun. Dan Pengemb. Tek. Lingkung. 2021, 18, 306–316. [CrossRef]spa
dc.relation.references25. Hong, Y.; Ezeh, C.I.; Deng, W.; Hong, S.-H.; Peng, Z.; Tang, Y. Correlation between building characteristic and associated energy consumption: Prototyping low-rise office building in Shanghai. Energy Build. 2020, 217, 109959. [CrossRef]spa
dc.relation.references26. Lee, W.L.; Lee, S.H. Developing a simplified model for evaluating chiller-system configurations. Appl. Energy 2007, 84, 290–306. [CrossRef]spa
dc.relation.references27. Gang, W.; Wang, S.; Xiao, F.; Gao, D. Robust optimal design of building cooling systems considering cooling load uncertainty and equipment reliability. Appl. Energy 2015, 159, 265–275. [CrossRef]spa
dc.relation.references28. Catrini, P.; Piacentino, A.; Cardona, F.; Ciulla, G. Exergoeconomic analysis as support in decision-making for the design and operation of multiple chiller systems in air conditioning applications. Energy Convers. Manag. 2020, 220, 113051. [CrossRef]spa
dc.relation.references29. Maasoumy, M.; Zhu, Q.; Li, C.; Meggers, F.; Sangiovanni-Vincentelli, A. Co-design of control algorithm and embedded platform for building hvac systems. In Proceedings of the ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), Philadelphia, PA, USA, 8–11 April 2013; pp. 61–70.spa
dc.relation.references30. Bhattacharya, A.; Vasisht, S.; Adetola, V.; Huang, S.; Sharma, H.; Draguna, L. Control co-design of commercial building chiller plant using Bayesian optimization. Energy Build. 2021, 246, 111077. [CrossRef]spa
dc.relation.references31. Ngyen, A.-T.; Reiter, S.; Rigo, P. A review on simulation based optimization methods applied to building performance analysis. Appl. Energy 2014, 113, 1043–1058. [CrossRef]spa
dc.relation.references32. Díaz Torres, Y.; Álvarez Guerra, M.; Haeseldonck, D. The air conditioning system. Aspects that regulate their design for building. Part 2. Univ. Soc. 2020, 12, 461–469.spa
dc.relation.references33. Díaz Torres, Y. Procedimiento Para Determinar la Distribución de la Capacidad Frigorífica Optima de Una Planta de Enfriadoras. Doctoral Thesis, Universidad de Cienfuegos, Cienfuegos, Cuba, 2021.spa
dc.relation.references34. Díaz Torres, Y.; Reyes, C.R.; Hernandez, H.; Alvarez-Guerra, M.; Gómez, S.J.; Silva, I. Procedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design. Energy Rep. 2021, 7, 622–637. [CrossRef]spa
dc.relation.references35. Díaz Torres, Y.R.; Hernandez, H.; Torres, M.; Alvarez-Guerra, M.; Gullo, P.; Silva, I. Statistical-mathematical procedure to determine the cooling distribution of a chiller plant. Energy Rep. 2022, 8, 512–526. [CrossRef]spa
dc.relation.references36. Rendón, M.E.; Villasís, M.Á.; Miranda, M.G. Estadística descriptiva. Rev. Alerg. Mex. 2016, 63, 397–407.spa
dc.relation.references37. Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [CrossRef]spa
dc.relation.references38. Anderson, T.W.; Darling, D.A. Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes. Ann. Math. Stat. 1952, 23, 193–212. [CrossRef]spa
dc.relation.references39. Anderson, T.W.; Darling, D.A. A Test of Goodness-of-Fit. J. Am. Stat. Assoc. 1954, 49, 765–769. [CrossRef]spa
dc.relation.references40. Kolmogorov, A. Sulla determinazione empirica di una legge di distribuzione. G. Dell’istituto Ital. Degli Attuari 1933, 4, 83–91.spa
dc.relation.references41. Smirnov, N. Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat. 1948, 19, 279–281. [CrossRef]spa
dc.relation.references42. Pearson, K. Contribution to the mathematical theory of evolution. II. Skew variation in homogenous material. Philos. Trans. R. Soc. Lond. 1895, 91, 343–414.spa
dc.relation.references43. Cramér, H. On the composition of elementary errors. Scand. Actuar. J. 1928, 1, 13–74. [CrossRef]spa
dc.relation.references44. Von Mises, R.E. Wahrscheinlichkeit, Statistik und Wahrheit; Julius Springer: Berlin, Germany, 1928.spa
dc.relation.references45. Lilliefors, H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 1967, 62, 399–400. [CrossRef]spa
dc.relation.references46. Jarque, C.M.; Bera, A.K. Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ. Lett. 1980, 6, 255–259. [CrossRef]spa
dc.relation.references47. Jarque, C.M.; Bera, A.K. Efficient tests for normality, homoscedasticity and serial independence of regression residuals: Monte Carlo evidence. Econ. Lett. 1981, 7, 313–318.spa
dc.relation.references48. Jarque, C.M.; Bera, A.K. A test for normality of observations and regression residuals. Int. Stat. Rev. 1987, 55, 163–172. [CrossRef]spa
dc.relation.references49. D’Agostino, R.B.; Belanger, A.; D’Agostino, R.B., Jr. A suggestion for using powerful and informative tests of normality. Am. Stat. 1990, 44, 316–321.spa
dc.relation.references50. Hernandez, H. Testing for normality: What is the best method? Fors. Chem. Res. Rep. 2021, 6, 101–138.spa
dc.relation.references51. Razali, N.M.; Wah, Y.B. Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests. J. Stat. Modeling Anal. 2011, 2, 21–33.spa
dc.relation.references52. Demir, S. Comparison of Normality Tests in Terms of Sample Sizes under Different Skewness and Kurtosis Coefficients. Int. J. Assess. Tools Educ. 2022, 9, 397–409. [CrossRef]spa
dc.relation.references53. Levene, H. Robust testes for equality of variances. In Contributions to Probability and Statistics; Olkin, I., Ed.; Stanford University Press: Palo Alto, CA, USA, 1960; pp. 278–292, MR0120709.spa
dc.relation.references54. Bartlett, M.S. Properties of Sufficiency and Statistical Tests. Proc. R. Stat. Soc. 1937, 160, 268–282.spa
dc.relation.references55. Cochran, W.G. Some consequences when the assumptions for the analysis of variance are not satisfied. Biometics 1947, 3, 22–38. [CrossRef]spa
dc.relation.references56. Brown, M.B.; Forsythe, A.B. Robust tests for equality of variances. J. Am. Stat. Assoc. 1974, 69, 364–367. [CrossRef]spa
dc.relation.references57. Vorapongsathorn, T.; Taejaroenkul, S.; Viwatwongkasem, C. A comparison of type I error and power of Bartlett’s test, Levene’s test and Cochran’s test under violation of assumptions. Sci. Technol. 2004, 26, 538–547.spa
dc.relation.references58. Hernandez, J.D.; Espinoza, F.; Rodriguez, J.; Chacon, J.G.; Toloza, C.R.; Arenas, M.K.; Carrillo, S.M.; Pirela, V. On the proper use of the pearson correlation coefficient: Definitions, properties and assumption. Arch. Venez. Farmacol. Ter. 2018, 37, 552–561.spa
dc.relation.references59. Asuero, A.G.; Sayago, A.; González, A.G. Correlation Coefficient: An Overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [CrossRef]spa
dc.relation.references60. Hair, J.F., Jr.; Money, A.H.; Samouel, P.; Page, M. Research Methods for Business; John Wiley & Sons: Hoboken, NJ, USA, 2007; Available online: https://digitalcommons.kennesaw.edu/facpubs/2952 (accessed on 25 January 2022).spa
dc.relation.references61. Park, R.E. Estimation with Heteroscedastic Error Terms. Econometrica 1966, 34, 888. [CrossRef]spa
dc.relation.references62. Glejser, H. A New Test for Heteroscedasticity. J. Am. Stat. Assoc. 1969, 64, 316–323. [CrossRef]spa
dc.relation.references63. Goldfield, S.M.; Quandt, R.E. Some Test for Homoscedasticity. J. Am. Stat. Assoc. 1965, 310, 539–547. [CrossRef]spa
dc.relation.references64. Harrison, M.J.; McCabe, P. A Test for Heteroscedasticity Based on Ordinary Least Square Residuals. J. Am. Stat. Assoc. 1979, 74, 494–499.spa
dc.relation.references65. Breusch, T.S.; Pagan, A. The Review of Economic Studies. In Econometrics Issue; Oxford University Press: Oxford, UK, 1980; Volume 47, pp. 239–253.spa
dc.relation.references66. White, H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 1980, 48, 817–838. [CrossRef]spa
dc.relation.references67. Koenker, R.; Bassett, G. Robust Tests for Heteroscedasticity Based on Regression Quantiles. Econometrica 1982, 50, 43–61. [CrossRef]spa
dc.relation.references68. Onifade, O.C.; Olanrewaju, S.O. Investigating Performances of Some Statistical Tests for Heteroscedasticity Assumption in Generalized Linear Model: A Monte Carlo Simulations Study. Open J. Stat. 2020, 10, 453–493. [CrossRef]spa
dc.relation.references69. Rasmussen, J.L.; Dunlap, W.P. Dealing with non-normal data: Parametric analysis of transformed data vs nonparametric analysis.Educ. Psychol. Meas. 1991, 51, 809–820. [CrossRef]spa
dc.relation.references70. Olvera, O.L.O.; Zumbo, B.D. Heteroskedasticity in multiple Regression analysis: What it is, how to detect it and how to solve it with applications in R and SPSS. Pract. Assess. Res. Eval. 2019, 24, 1.spa
dc.relation.references71. Huber, P.J. The behavior of maximum likelihood estimates under nonstandard conditions. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 7 January 1967; Volume 1, pp. 221–223.spa
dc.relation.references72. Eicker, F. Limit theorems for regressions with unequal and dependent errors. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 7 January 1967; Volume 1, pp. 59–82.spa
dc.relation.references73. Davidson, R.; Flachaire, E. The wild bootstrap, tamed at last. J. Econom. 2008, 146, 162–169. [CrossRef]spa
dc.relation.references74. Flachaire, E. A better way to bootstrap pairs. Econ. Lett. 1999, 64, 257–262. [CrossRef]spa
dc.relation.references75. Flachaire, E. Bootstrapping heteroskedastic regression models: Wild bootstrap vs. pairs bootstrap. Comput. Stat. Data Anal. 2005, 49, 361–376. [CrossRef]spa
dc.relation.references76. Godfrey, L.G.; Orme, C.D. Controlling the finite sample significance levels of heteroskedasticity-robust tests of several linear restrictions on regression coefficients. Econ. Lett. 2004, 82, 281–287. [CrossRef]spa
dc.relation.references77. MacKinnon, J.G. Thirty years of heteroskedasticity-robust inference. In Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis; Chen, X., Swanson, N.R.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 437–462.spa
dc.relation.references78. Richard, P. Robust heteroskedasticity-robust tests. Econ. Lett. 2017, 159, 28–32. [CrossRef]spa
dc.relation.references79. Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101. [CrossRef]spa
dc.relation.references80. Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [CrossRef]spa
dc.relation.references81. Statgraphics Centurion 18. Available online: https://www.statgraphics.com/download18 (accessed on 10 May 2022).spa
dc.relation.references82. E-View 12 Student Version. Available online: https://www.eviews.com/home.html (accessed on 12 May 2022).spa
dc.relation.references83. Scott Long, J.; Ervin Laurie, H. Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model. Am. Stat. 2000, 54, 217–224.spa
dc.relation.references84. Johnson, N.L.; Kotz, S.; Balakrishnan, N. Chi-Square Distributions including Chi and Rayleigh. In Continuous Univariate Distributions, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 1994; Volume 1, pp. 415–493. ISBN 978-0-471-58495-7.spa
dc.relation.references85. IBM SPSS Statistics 20. Available online: https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-20 (accessed on 12 May 2022).spa
dc.relation.references86. Huang, P.; Wang, Y.; Huang, G.; Augenbroe, G. Investigation of the ageing effect on chiller plant maximum cooling capacity using Bayesian Markov Chain Monte Carlo method. J. Build. Perform. Simul. 2016, 9, 529–541. [CrossRef]spa
dc.subject.proposalChillereng
dc.subject.proposalDesign variableseng
dc.subject.proposalEnergy savingeng
dc.subject.proposalLife cycle costeng
dc.subject.proposalPearson’s correlationeng
dc.subject.proposalSpearman’s correlationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationendpage19spa
dc.relation.citationstartpage1spa
dc.relation.citationissue16spa
dc.relation.citationvolume14spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional (CC BY 4.0)