Mostrar el registro sencillo del ítem

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.contributor.authorMoreno Rocha, Christian Manuel
dc.contributor.authorMilanés Batista, Celene
dc.contributor.authorArguello Rodríguez, Willian Fernando
dc.contributor.authorFontalvo Ballesteros, Arley Jesús
dc.contributor.authorNúñez Álvarez, José Ricardo
dc.date.accessioned2023-01-30T14:46:39Z
dc.date.available2023-01-30T14:46:39Z
dc.date.issued2022-10
dc.identifier.issn2088-8708spa
dc.identifier.urihttps://hdl.handle.net/11323/9845
dc.description.abstractThis article quantifies the development of photovoltaic solar energy in Colombia and its current development prospects. The high demand for electricity in Colombia is increasing since there is a large population, industrial, and business increase, which brings a higher energy consumption and consequently economic, social, and environmental problems. Faced with this situation, a possible solution is proposed, using solar energy, to supply the increase in demand and mitigate the problems caused by current electricity generation because Colombia has high levels of solar radiation in almost the entire territory. The objective of this research is based on the analysis of the behavior of the projects on photovoltaic solar systems presented to the mining-energy planning unit (UPME) in the last 14 years until September 30, 2020, as well such as the study of the areas with the most effective implementation of this technology and their respective radiation indices. In addition, a synthesis is made of the regulations, laws, and tax incentives that exist for the implementation of this technology and the different stages of execution of the projects approved and in performance.eng
dc.format.extent8 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInstitute of Advanced Engineering and Science (IAES)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleChallenges and perspectives of the use of photovoltaic solar energy in Colombiaeng
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.11591/ijece.v12i5.pp4521-4528
dc.identifier.eissn2722-2578spa
dc.coverage.countryColombia
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeIndonesiaspa
dc.relation.ispartofjournalInternational Journal of Electrical and Computer Engineering (IJECE)spa
dc.relation.references[1] J. Hernández, E. Sáenz, and W. Vallejo, “Study of the solar resource in the City of Bogotá for the design of residential interconnected photovoltaic systems,” Revista Colombiana de Física, vol. 42, no. 2, Apr. 2010, doi: 10.1016/j.renene.2019.10.066.spa
dc.relation.references[2] E. D. Obando, S. X. Carvajal, and J. Pineda Agudelo, “Solar radiation prediction using machine learning techniques: A review,” IEEE Latin America Transactions, vol. 17, no. 04, pp. 684–697, Apr. 2019, doi: 10.1109/TLA.2019.8891934.spa
dc.relation.references[3] E. V. Mendoza Merchán, M. D. V. Gutiérrez, D. A. M. Montenegro, J. R. Nuñez Alvarez, and J. W. G. Guerrero, “An analysis of electricity generation with renewable resources in Germany,” International Journal of Energy Economics and Policy, vol. 10, no. 5, pp. 361–367, Aug. 2020, doi: 10.32479/ijeep.9369.spa
dc.relation.references[4] E. F. Cantillo and F. Conde, “Commercial and technical diagnosis of photovoltaic sector at Colombian Caribbean region,” Prospectiva, vol. 9, no. 2, pp. 81–88, 2011.spa
dc.relation.references[5] A. R. López et al., “Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market,” Renewable Energy, vol. 148, pp. 1266–1279, Apr. 2020, doi: 10.1016/j.renene.2019.10.066.spa
dc.relation.references[6] L. M. López-Ochoa, K. Verichev, J. Las-Heras-Casas, and M. Carpio, “Dataset on solar contributions by thermal solar systems in Chile applying Chilean and Spanish regulations,” Data in Brief, vol. 26, Oct. 2019, doi: 10.1016/j.dib.2019.104505.spa
dc.relation.references[7] L. Dusonchet and E. Telaretti, “Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in western European Union countries,” Energy Policy, vol. 38, no. 7, pp. 3297–3308, Jul. 2010, doi: 10.1016/j.enpol.2010.01.053.spa
dc.relation.references[8] H. Zsiborács, G. Pintér, A. Vincze, Z. Birkner, and N. H. Baranyai, “Grid balancing challenges illustrated by two European examples: Interactions of electric grids, photovoltaic power generation, energy storage and power generation forecasting,” Energy Reports, vol. 7, pp. 3805–3818, Nov. 2021, doi: 10.1016/j.egyr.2021.06.007.spa
dc.relation.references[9] J. Ordóñez, E. Jadraque, J. Alegre, and G. Martínez, “Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain),” Renewable and Sustainable Energy Reviews, vol. 14, no. 7, pp. 2122–2130, Sep. 2010, doi:10.1016/j.rser.2010.01.001.spa
dc.relation.references[10] S. Shamshirband, T. Rabczuk, and K.-W. Chau, “A survey of deep learning techniques: application in wind and solar energy resources,” IEEE Access, vol. 7, pp. 164650–164666, 2019, doi:0.1109/ACCESS.2019.2951750.spa
dc.relation.references[11] H. González-Acevedo, Y. Muñoz-Maldonado, A. Ospino-Castro, J. Serrano, A. Atencio, and C. J. Saavedra, “Design and performance evaluation of a solar tracking panel of single axis in Colombia,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 4, pp. 2889–2898, Aug. 2021, doi: 10.11591/ijece.v11i4.pp2889-2898.spa
dc.relation.references[12] G. V. Ochoa, J. N. Alvarez, and C. Acevedo, “Research evolution on renewable energies resources from 2007 to 2017: A comparative study on solar, geothermal, wind and biomass energy,” International Journal of Energy Economics and Policy, vol. 9, no. 6, pp. 242–253, Oct. 2019, doi: 10.32479/ijeep.8051.spa
dc.relation.references[13] G. Carvajal-Romo, M. Valderrama-Mendoza, D. Rodríguez-Urrego, and L. Rodríguez-Urrego, “Assessment of solar and wind energy potential in La Guajira, Colombia: Current status, and future prospects,” Sustainable Energy Technologies and Assessments, vol. 36, Dec. 2019, doi: 10.1016/j.seta.2019.100531.spa
dc.relation.references[14] D. Rodríguez-Urrego and L. Rodríguez-Urrego, “Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects,” Renewable and Sustainable Energy Reviews, vol. 92, pp. 160–170, Sep. 2018, doi: 10.1016/j.rser.2018.04.065.spa
dc.relation.references[15] A. Vides-Prado et al., “Techno-economic feasibility analysis of photovoltaic systems in remote areas for indigenous communities in the Colombian Guajira,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 4245–4255, Feb. 2018, doi: 10.1016/j.rser.2017.05.101.spa
dc.relation.references[16] J. Quevedo, J. Ruiz, and D. Gonzalez, “Analysis of a photovoltaic solar installation in accordance to performance parameters of IEC61724,” in 2019 FISE-IEEE/CIGRE Conference - Living the energy Transition (FISE/CIGRE), Dec. 2019, pp. 1–6, doi: 10.1109/FISECIGRE48012.2019.8984950.spa
dc.relation.references[17] UPME and BID, “Integration of non-conventional renewable energies in Colombia,” Convenio ATN/FM-12825-CO, 2015.spa
dc.relation.references[18] K. Palomino, F. Reyes, J. Núñez, G. Valencia, and R. H. Acosta, “Wind speed prediction based on Univariate ARIMA and OLS on the Colombian caribbean coast,” Journal of Engineering Science and Technology Review, vol. 13, no. 3, pp. 200–205, 2020, doi: 10.25103/jestr.133.22.spa
dc.relation.references[19] O. C. Silvera, M. V. Chamorro, and G. V. Ochoa, “Wind and solar resource assessment and prediction using artificial neural network and semi-empirical model: case study of the Colombian caribbean region,” Heliyon, vol. 7, no. 9, Sep. 2021, doi: 10.1016/j.heliyon.2021.e07959.spa
dc.relation.references[20] UPME, “Electricity generation project records report,” Ministerio de Minas y Energías, Colombia, 2020.spa
dc.relation.references[21] A. M. Aguirre-Mendoza, C. Díaz-Mendoza, and J. Pasqualino, “Renewable energy potential analysis in non-interconnected islands. Case study: Isla Grande, Corales del Rosario Archipelago, Colombia,” Ecological Engineering, vol. 130, pp. 252–262, May 2019, doi: 10.1016/j.ecoleng.2017.08.020.spa
dc.relation.references[22] B. Espinar et al., “Analysis of different comparison parameters applied to solar radiation data from satellite and German radiometric stations,” Solar Energy, vol. 83, no. 1, pp. 118–125, Jan. 2009, doi: 10.1016/j.solener.2008.07.009.spa
dc.relation.references[23] I. Pagola, M. Gastón, A. Bernardos, and C. Fernández-Peruchena, “A combination of heliosat-1 and heliosat-2 methods for deriving solar radiation from satellite images,” Energy Procedia, vol. 57, pp. 1037–1043, 2014, doi: 10.1016/j.egypro.2014.10.088.spa
dc.relation.references[24] A. Saavedra, N. A. Galvis, M. Castaneda, S. Zapata, F. Mesa, and A. J. Aristizábal, “Feasibility of using photovoltaic solar energy for water treatment plants,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 3, pp. 1962–1968, Jun. 2021, doi: 10.11591/ijece.v11i3.pp1962-1968.spa
dc.relation.references[25] L. M. Cardenas, C. J. Franco, and I. Dyner, “Assessing emissions–mitigation energy policy under integrated supply and demand analysis: the Colombian case,” Journal of Cleaner Production, vol. 112, pp. 3759–3773, Jan. 2016, doi: 10.1016/j.jclepro.2015.08.089.spa
dc.relation.references[26] J. Arias-Gaviria, S. X. Carvajal-Quintero, and S. Arango-Aramburo, “Understanding dynamics and policy for renewable energy diffusion in Colombia,” Renewable Energy, vol. 139, pp. 1111–1119, Aug. 2019, doi: 10.1016/j.renene.2019.02.138.spa
dc.relation.references[27] E. Mendoza, P. Fuentes, I. Benítez, D. Reina, and J. Núñez, “Network of multi-hop wireless sensors for low cost and extended area home automation systems,” Revista Iberoamericana de Automática e Informática industrial, vol. 17, no. 4, pp. 412–423, Sep. 2020, doi: 10.4995/riai.2020.12301.spa
dc.relation.references[28] J. R. Nuñez et al., “Design of a fuzzy controller for a hybrid generation system,” IOP Conference Series: Materials Science and Engineering, vol. 844, no. 1, May 2020, doi: 10.1088/1757-899X/844/1/012017.spa
dc.relation.references[29] A. Perez and J. J. Garcia-Rendon, “Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia,” Renewable Energy, vol. 167, pp. 146–161, Apr. 2021, doi: 10.1016/j.renene.2020.11.067.spa
dc.relation.references[30] J. R. Nunez Alvarez, I. F. Benitez Pina, A. Rodriguez Martinez, S. Diaz Perez, and D. Luiz de Oliveira, “Tools for the Implementation of a SCADA System in a Desalination Process,” IEEE Latin America Transactions, vol. 17, no. 11, pp. 1858–1864, Nov. 2019, doi: 10.1109/TLA.2019.8986424.spa
dc.subject.proposalEnvironmental problemeng
dc.subject.proposalPhotovoltaic solar systemeng
dc.subject.proposalRenewable energyeng
dc.subject.proposalSolar energy projectseng
dc.subject.proposalSolar energyeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationendpage4528spa
dc.relation.citationstartpage4521spa
dc.relation.citationissue5spa
dc.relation.citationvolume12spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)