Mostrar el registro sencillo del ítem

dc.contributor.authorSousa Santos, Vladimirspa
dc.contributor.authorViego, Percy Rafaelspa
dc.contributor.authorGómez, Julio Rafaelspa
dc.contributor.authorQuispe, Enrique Cirospa
dc.contributor.authorBalbis Morejón, Milenspa
dc.date.accessioned2018-11-14T19:22:22Z
dc.date.available2018-11-14T19:22:22Z
dc.date.issued2016
dc.identifier.isbn978-146738756-9spa
dc.identifier.urihttp://hdl.handle.net/11323/984spa
dc.description.abstractThis paper presents the application of a method to determine the output power, losses, and efficiency of induction motors, working in no-controlled conditions, in the presences of unbalanced and harmonics voltages. The method uses the steady state equivalent circuits, with some considerations for the analysis of motor performance, fed with unbalanced and harmonic voltages. The parameters of circuits are determined with low invasiveness, by applying a Bacterial Foraging Algorithm as technique of evolutionary search. With this, the efficiency and other operational parameters can be estimated at any operating point. The method was tested in a 12.6 kW motor working in an industrial network, with harmonics and voltage unbalanced.spa
dc.language.isoeng
dc.publisherIEEE Chilean Conference on Electrical, Electronics Engineering, Information and Communication Technologiesspa
dc.rightsAtribución – No comercial – Compartir igualspa
dc.subjectEnergy managementeng
dc.subjectEquivalent circuitseng
dc.subjectHarmonic analysiseng
dc.subjectInduction motorseng
dc.subjectIndustrial power systemseng
dc.subjectParameter estimationeng
dc.subjectPower qualityeng
dc.subjectUnbalanced voltageeng
dc.titleEstimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltageseng
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1]. E.C. Quispe, X.M. Lopez-Fernandez, A.M.S. Mendes, A.J.M. Cardoso, J.A. Palacios, “Influence of the positive sequence voltage on the derating of three-phase induction motors under voltage unbalance”, in Proc. IEEE Int. Electr. Mach. and Driv. Conf. (IEMDC), 2013, pp. 100-105. [2]. IEEE Standard test procedure for polyphase induction motors and generators, IEEE Standard 112, 2004. [3]. IEC Standard methods for determining losses and efficiency from tests, IEC Standard 60034-2-1, 2014. [4]. A. Gharakhani and P. Pillay, “An in-situ efficiency estimation technique for induction machines working with unbalanced supplies”, IEEE Trans. Energy Convers., vol. 27, no. 1, pp, 85-95, 2012. [5]. B. Lu, T. G. Habetler and R. G. Harley, “A nonintrusive and in-service motor-efficiency estimation method using air-gap torque with considerations of condition monitoring”, IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1666–1674, 2008. [6]. M. Çunkaú and T. Sa÷, “Efficiency determination of induction motors using multi-objective evolutionary algorithms”, Adv. Eng. Softw., vol. 41, no. 2, pp. 255-261, 2010. [7]. P. Phumiphak and C. Chat-Uthai, “Nonintrusive method for estimating field efficiency of inverter-fed induction motor using measured values”, in Proc. IEEE Int. Conf. Sustainable Energy Technol, 2008, pp. 580– 583. [8]. C. P. Salomon, W. C. Santana, L. E. Borges, E.L. Bonaldi, L. E. L. de Oliveira, J. G. Borges, G. Lambert-Torres and A. R. Donadon, “A stator flux synthesis approach for torque estimation of induction motors using a modified stator resistance considering the losses effect”, in Proc. IEEE Int. Electr. Mach. and Driv. Conf. (IEMDC), 2013, pp. 1452-1458. [9]. D. Bae, D. Kim, H.-K. Jung, S.-Y. Hahn and C. Koh, “Determination of induction motor parameters by using neural network based on FEM results”, IEEE Trans. Magn., vol. 33, no. 2, pp. 1924-1927, 1997. [10]. Y. Liu and K. M. Passino, “Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors”, J. Optim. Theory Appl., vol. 115, no. 3, pp. 603-628, 2002. [11]. V. P. Sakthivel, R. Bhuvaneswari and S. Subramanian, “An accurate and economical approach for induction motor field efficiency estimation using bacterial foraging algorithm”, Measurement, vol. 44, no. 4. pp. 674-684, 2011. [12]. V. Sousa, P. R. Viego and J. Gómez, “Bacterial foraging algorithm application for induction motor field efficiency estimation under unbalanced voltages”, Measurement. vol. 46, pp. 2232-2237, 2013. [13]. V. Sousa, P. R. Viego, J. Gómez, N. Lemozy, A. Jurado and E. C. Quispe, “Procedure for determining induction motor efficiency working under distorted grid voltages”, IEEE Trans. Energy Convers., vol. PP, no. 99, pp. 1-9. 2014. [14]. V. Sousa, E. C. Quispe, J. Gómez, P. R. Viego, N. Lemozy, A. Jurado and M. Brugnoni, “Bacterial foraging algorithm application for induction motor field efficiency estimation under harmonics and unbalanced voltages”, in Proc. IEEE Int. Electr. Mach. and Driv. Conf. (IEMDC), 2013, pp. 1174-1178. [15]. IEEE Recommended practices and requirements for harmonic control in electrical power systems, IEEE Standard 519, 1993. [16]. J. Pedra, L. Sainz and F. Córcoles, “Harmonic modeling of induction motors”, Electr. Power Syst. Res., vol. 76, no 11, pp. 936-944, 2006. [17]. J. C. A. Escobar and F. de la Rosa “Shaft torsional vibration due to nonlinear loads in low capacity turbine units”, in Proc. IEEE Power Engineering Society, 2001, pp. 1403–1408. [18]. P. G. Cummings, “Estimating effect of system harmonics on losses and temperature rise of squirrel-cage motors”, IEEE Trans. Ind. Appl., vol. IA-22, no. 6, pp. 1121-1126, 1986. [19]. V. Ivanov-Smolenski, Electrical Machines, vol. 2, Moscú: Mir, 1984. [20]. A. Enmanuel, J. Orr, D. Cyganski, E. Gulachenski, “Survey of harmonic voltages and currents at distribution substation,” IEEE Trans. Pow. Deliv., vol.6. no.4. pp. 2204-2212. 1991. [21]. Y. Baghzouz, R.F. Burch, A. Capasso, A. Cavallini, A.E. Emanuel, M. Halpin, A. Imece, A. Ludbrook, G. Montanari, K.J. Olejniczak, P. Ribeiro, S. Rios-Marcuello, L. Tang, R. Thaliam and P. Verde, “Timevarying harmonics. I. Characterizing measured data”, IEEE Trans. Pow. Deliv., vol. 13, no. 3, pp. 938-944, 1998. [22]. WEKA MOTORENPRÜFSTÄNDE manufacturer. [Online]. Available: http://www.weka-motorenpruefstaende.de/. [23]. IEC Standard rotating electrical machines-Part26: Effects of unbalanced voltages on the performance of three-phase cage induction motors, IEC Standard 60034-26, 2006. [24]. IEEE Recommended practices and requirements for harmonic control in electrical power systems, IEEE Standard 519. 1993.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem