Mostrar el registro sencillo del ítem

dc.rights.licenseAtribución 4.0 Internacional (CC BY 4.0)spa
dc.contributor.authorGrassi, Patrícia
dc.contributor.authorSchadeck Netto, Matias
dc.contributor.authorJahn, Sérgio Luiz
dc.contributor.authorgeorgin, jordana
dc.contributor.authorFranco, Dison S. P.
dc.contributor.authorSillanpää, Mika
dc.contributor.authorMeili, Lucas
dc.contributor.authorSilva Oliveira, Luis Felipe
dc.date.accessioned2023-02-28T16:46:17Z
dc.date.available2023-09-04
dc.date.available2023-02-28T16:46:17Z
dc.date.issued2022-09-04
dc.identifier.citationGrassi, P., Netto, M.S., Jahn, S.L. et al. Conversion of foliar residues of Sansevieria trifasciata into adsorbents: dye adsorption in continuous and discontinuous systems. Environ Sci Pollut Res 30, 9688–9698 (2023). https://doi.org/10.1007/s11356-022-22857-5spa
dc.identifier.issn0944-1344spa
dc.identifier.urihttps://hdl.handle.net/11323/9930
dc.description.abstractThe study analyzed the potential of leaf powder prepared from the residual leaves of the species Sansevieria trifasciata, as a potential adsorbent for methylene blue (MB) removal. The equilibrium was reached fast for almost all concentrations after 60 min, obtaining the maximum capacity of 139.98 mg g−1 for 200 mg L−1. The increase in temperature disfavored the dye adsorption, with the maximum adsorption capacity of 225.8 mg g−1, observed for 298 K. The thermodynamic parameters confirmed that the adsorption process is spontaneous and exothermic. A direct sloping curve was established for the fixed bed, with breakthrough time (tb), column stoichiometric capacities (qeq), and the mass transfer zone lengths (Zm) were 1430, 1130, and 525 min; 60.48, 187.01, and 322.65 mg g−1; and 8.81, 11.28, and 10.71 cm, for 100, 200, and 500 mg L−1, respectively. Furthermore, in a mixture of several dyes, the adsorbent obtained the removal of 51% of the color.eng
dc.format.extent1 páginaspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSpringer Science + Business Mediaspa
dc.rights© 2023 Springer Nature Switzerland AG. Part of Springer Nature.eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://link.springer.com/article/10.1007/s11356-022-22857-5spa
dc.titleConversion of foliar residues of Sansevieria trifasciata into adsorbents: dye adsorption in continuous and discontinuous systems
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.identifier.doi10.1007/s11356-022-22857-5
dc.identifier.eissn1614-7499spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeGermanyspa
dc.relation.ispartofjournalEnvironmental Science and Pollution Researchspa
dc.relation.referencesAdegoke KA, Bello OS (2015) Dye sequestration using agricultural wastes as adsorbents. Water Resour Ind 12:8–24. https://doi.org/10.1016/j.wri.2015.09.002spa
dc.relation.referencesBaloo L, Isa MH, Bin SN et al (2021) Adsorptive removal of methylene blue and acid orange 10 dyes from aqueous solutions using oil palm wastes-derived activated carbons. Alexandria Eng J 60:5611–5629. https://doi.org/10.1016/J.AEJ.2021.04.044spa
dc.relation.referencesAdegoke KA, Bello OS (2015) Dye sequestration using agricultural wastes as adsorbents. Water Resour Ind 12:8–24. https://doi.org/10.1016/j.wri.2015.09.002spa
dc.relation.referencesBaloo L, Isa MH, Bin SN et al (2021) Adsorptive removal of methylene blue and acid orange 10 dyes from aqueous solutions using oil palm wastes-derived activated carbons. Alexandria Eng J 60:5611–5629. https://doi.org/10.1016/J.AEJ.2021.04.044spa
dc.relation.referencesBonilla-Petriciolet A, Mendoza-Castillo DI, Reynel-Ávila HE (2017) Adsorption processes for water treatment and purification. Springer, Switzerland, p 266spa
dc.relation.referencesBu J, Yuan L, Zhang N et al (2020) High-efficiency adsorption of methylene blue dye from wastewater by a thiosemicarbazide functionalized graphene oxide composite. Diam Relat Mater 101:107604. https://doi.org/10.1016/j.diamond.2019.107604spa
dc.relation.referencesBulgariu L, Escudero LB, Bello OS et al (2019) The utilization of leaf-based adsorbents for dyes removal: A review. J Mol Liq 276:728–747. https://doi.org/10.1016/j.molliq.2018.12.001spa
dc.relation.referencesCestari AR, Vieira EFS, dos Santos AGP et al (2004) Adsorption of anionic dyes on chitosan beads. 1. The influence of the chemical structures of dyes and temperature on the adsorption kinetics. J Colloid Interface Sci 280:380–386. https://doi.org/10.1016/j.jcis.2004.08.007spa
dc.relation.referencesCheruiyot GK, Wanyonyi WC, Kiplimo JJ, Maina EN (2019) Adsorption of toxic crystal violet dye using coffee husks: equilibrium, kinetics and thermodynamics study. Sci African 5:e00116. https://doi.org/10.1016/j.sciaf.2019.e00116spa
dc.relation.referencesDali Youcef L, Belaroui LS, López-Galindo A (2019) Adsorption of a cationic methylene blue dye on an Algerian palygorskite. Appl Clay Sci 179:105145. https://doi.org/10.1016/j.clay.2019.105145spa
dc.relation.referencesDotto GL, McKay G (2020) Current scenario and challenges in adsorption for water treatment. J Environ Chem Eng 8:103988. https://doi.org/10.1016/j.jece.2020.103988spa
dc.relation.referencesEl Messaoudi N, El Khomri M, Ablouh E-H et al (2022) Biosynthesis of SiO2 nanoparticles using extract of Nerium oleander leaves for the removal of tetracycline antibiotic. Chemosphere 287:132453. https://doi.org/10.1016/j.chemosphere.2021.132453spa
dc.relation.referencesElovich SY, Larionov OG (1962) Theory of adsorption from nonelectrolyte solutions on solid adsorbents - 2. Experimental verification of the equation for the adsorption isotherm from solutions. Bull Acad Sci USSR Div Chem Sci 11:198–203. https://doi.org/10.1007/BF00908017spa
dc.relation.referencesFranciski MA, Peres EC, Godinho M et al (2018) Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption. Waste Manag 78:630–638. https://doi.org/10.1016/j.wasman.2018.06.040spa
dc.relation.referencesFranco DSP, Dotto GL (2020) A Short analysis of biosorbents and its potential removal contaminants from aqueous media. 614–616. https://doi.org/10.33552/GJES.2020.05.000610spa
dc.relation.referencesFranco DSP, Fagundes JLS, Georgin J et al (2020) A mass transfer study considering intraparticle diffusion and axial dispersion for fixed-bed adsorption of crystal violet on pecan pericarp (Carya illinoensis). Chem Eng J 397:125423. https://doi.org/10.1016/j.cej.2020.125423spa
dc.relation.referencesFranco DSP, Georgin J, Netto MS et al (2021) Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species. J Environ Chem Eng 9:105927. https://doi.org/10.1016/j.jece.2021.105927spa
dc.relation.referencesFranco DSP, Tanabe EH, Bertuol DA et al (2017) Alternative treatments to improve the potential of rice husk as adsorbent for methylene blue. Water Sci Technol 75:296–305. https://doi.org/10.2166/wst.2016.504spa
dc.relation.referencesFreundlich H (1907) Über die Adsorption in Lösungen. Zeitschrift für Phys Chemie 57U.https://doi.org/10.1515/zpch-1907-5723spa
dc.relation.referencesGeed SR, Samal K, Tagade A (2019) Development of adsorption-biodegradation hybrid process for removal of methylene blue from wastewater. J Environ Chem Eng 7:103439. https://doi.org/10.1016/j.jece.2019.103439spa
dc.relation.referencesGeorgin J, Dotto GL, Mazutti MA, Foletto EL (2016) Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions. J Environ Chem Eng 4:266–275. https://doi.org/10.1016/j.jece.2015.11.018spa
dc.relation.referencesGeorgin J, Drumm FC, Grassi P et al (2018) Potential of Araucaria angustifolia bark as adsorbent to remove Gentian Violet dye from aqueous effluents. Water Sci Technol 78:1693–1703. https://doi.org/10.2166/wst.2018.448spa
dc.relation.referencesGeorgin J, Franco D, Drumm FC et al (2020a) Powdered biosorbent from the mandacaru cactus (cereus jamacaru) for discontinuous and continuous removal of Basic Fuchsin from aqueous solutions. Powder Technol 364:584–592. https://doi.org/10.1016/j.powtec.2020.01.064spa
dc.relation.referencesGeorgin J, Franco DSP, Netto MS et al (2021) Adsorption investigation of 2,4-D herbicide on acid-treated peanut (Arachis hypogaea) skins. Environ Sci Pollut Res 28:36453–36463. https://doi.org/10.1007/s11356-021-12813-0spa
dc.relation.referencesGiles CH, Smith D, D’Silva AP et al (1974) A General treatment and classification of the solute adsorption isotherm Part I. Theoretical J Colloid Interface Sci 47:766–778. https://doi.org/10.1016/0021-9797(74)90253-7spa
dc.relation.referencesGonçalves M, Castro CS, Boas IKV et al (2019) Glycerin waste as sustainable precursor for activated carbon production: adsorption properties and application in supercapacitors. J Environ Chem Eng 7:103059. https://doi.org/10.1016/j.jece.2019.103059spa
dc.relation.referencesGoswami M, Phukan P (2017) Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon. J Environ Chem Eng 5:3508–3517. https://doi.org/10.1016/j.jece.2017.07.016spa
dc.relation.referencesGrassi P, Drumm FC, da Silveira SJ et al (2020a) Investigation of the reaction pathway for degradation of emerging contaminant in water by photo-Fenton oxidation using fly ash as low-cost raw catalyst. Int J Environ Res 14:427–438. https://doi.org/10.1007/s41742-020-00266-1spa
dc.relation.referencesGrassi P, Drumm FCFCFC, Georgin J et al (2020b) Water treatment plant sludge as iron source to catalyze a heterogeneous photo-Fenton reaction. Environ Technol Innov 17:100544. https://doi.org/10.1016/j.eti.2019.100544spa
dc.relation.referencesHariharan A, Harini V, Sandhya S, Rangabhashiyam S (2020) Waste Musa acuminata residue as a potential biosorbent for the removal of hexavalent chromium from synthetic wastewater. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-01173-3spa
dc.relation.referencesHernandes PT, Oliveira MLS, Georgin J et al (2019) Adsorptive decontamination of wastewater containing methylene blue dye using golden trumpet tree bark (Handroanthus albus). Environ Sci Pollut Res 26:31924–31933. https://doi.org/10.1007/s11356-019-06353-xspa
dc.relation.referencesHo YS, McKay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot 76:332–340. https://doi.org/10.1205/095758298529696spa
dc.relation.referencesHsu TC (2008) Adsorption of an acid dye onto coal fly ash. Fuel 87:3040–3045. https://doi.org/10.1016/j.fuel.2008.03.026spa
dc.relation.referencesJain SN, Tamboli SR, Sutar DS et al (2020) Batch and continuous studies for adsorption of anionic dye onto waste tea residue: kinetic, equilibrium, breakthrough and reusability studies. J Clean Prod 252:119778. https://doi.org/10.1016/j.jclepro.2019.119778spa
dc.relation.referencesJawad AH, Abdulhameed AS (2020) Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: adsorption kinetic, isotherm and mechanism study. Surfaces and Interfaces 18:100422. https://doi.org/10.1016/j.surfin.2019.100422spa
dc.relation.referencesJokar M, Mirghaffari N, Soleimani M, Jabbari M (2019) Preparation and characterization of novel bio ion exchanger from medicinal herb waste (chicory) for the removal of Pb2+ and Cd2+ from aqueous solutions. J Water Process Eng 28:88–99. https://doi.org/10.1016/j.jwpe.2019.01.007spa
dc.relation.referencesKharat DS (2015) Preparing agricultural residue based adsorbents for removal of dyes from effluents - A review. Brazilian J Chem Eng 32:1–12. https://doi.org/10.1590/0104-6632.20150321s00003020spa
dc.relation.referencesKundu A, Mondal A (2019) Kinetics, isotherm, and thermodynamic studies of methylene blue selective adsorption and photocatalysis of malachite green from aqueous solution using layered Na-intercalated Cu-doped Titania. Appl Clay Sci 183:105323. https://doi.org/10.1016/j.clay.2019.105323spa
dc.relation.referencesLagergren S, Sven K (1898) About the theory of so-called adsorption of soluble substances, Vetenskapsakad. Handl 24:1–39spa
dc.relation.referencesLangmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004spa
dc.relation.referencesLima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048spa
dc.relation.referencesLiu S, Chen X, Ai W, Wei C (2019) A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption. J Clean Prod 212:1062–1071. https://doi.org/10.1016/j.jclepro.2018.12.060spa
dc.relation.referencesLuo WJ, Gao Q, Wu XL, Zhou CG (2014) Removal of cationic dye (methylene blue) from aqueous solution by humic acid-modified expanded perlite: experiment and theory. Sep Sci Technol 49:2400–2411. https://doi.org/10.1080/01496395.2014.920395spa
dc.relation.referencesMalik PK (2004) Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics. J Hazard Mater 113:81–88. https://doi.org/10.1016/j.jhazmat.2004.05.022spa
dc.relation.referencesMeili L, Lins PVS, Costa MT et al (2019) Adsorption of methylene blue on agroindustrial wastes: experimental investigation and phenomenological modelling. Prog Biophys Mol Biol 141:60–71. https://doi.org/10.1016/j.pbiomolbio.2018.07.011spa
dc.relation.referencesMódenes AN, Hinterholz CL, Neves CV et al (2019) A new alternative to use soybean hulls on the adsorptive removal of aqueous dyestuff. Bioresour Technol Reports 6:175–182. https://doi.org/10.1016/j.biteb.2019.03.004spa
dc.relation.referencesMohammadi A, Abdolvand H, Isfahani AP (2020) Alginate beads impregnated with sulfonate containing calix[4]arene-intercalated layered double hydroxides: In situ preparation, characterization and methylene blue adsorption studies. Int J Biol Macromol 146:89–98. https://doi.org/10.1016/j.ijbiomac.2019.12.229spa
dc.relation.referencesNetto MS, Georgin J, Franco DSP et al (2022) Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark. Environ Sci Pollut Res 29:3672–3685. https://doi.org/10.1007/s11356-021-15366-4spa
dc.relation.referencesSingh KP, Mohan D, Sinha S et al (2003) Color removal from wastewater using low-cost activated carbon derived from agricultural waste material. Ind Eng Chem Res 42:1965–1976. https://doi.org/10.1021/ie020800dspa
dc.relation.referencesPal K, Ghorai K, Aggrawal S et al (2018) Remarkable Ti-promotion in vanadium doped anatase titania for methylene blue adsorption in aqueous medium. J Environ Chem Eng 6:5212–5220. https://doi.org/10.1016/j.jece.2018.08.015spa
dc.relation.referencesPérez-Marín AB, Zapata VM, Ortunoo JF et al (2007) Removal of cadmium from aqueous solutions by adsorption onto orange waste. J Hazard Mater 139:122–131. https://doi.org/10.1016/j.jhazmat.2006.06.008spa
dc.relation.referencesRedlich O, Peterson DL (1959) A Useful adsorption isotherm. J Phys Chem 63:1024–1024. https://doi.org/10.1021/j150576a611spa
dc.relation.referencesRezakazemi M, Shirazian S (2019) Lignin-chitosan blend for methylene blue removal: adsorption modeling. J Mol Liq 274:778–791. https://doi.org/10.1016/j.molliq.2018.11.043spa
dc.relation.referencesSalleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280:1–13. https://doi.org/10.1016/j.desal.2011.07.019spa
dc.relation.referencesde Salomón YLO, Georgin J, Franco DSP et al (2020) Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations. Adv Powder Technol 31:2843–2852. https://doi.org/10.1016/j.apt.2020.05.004spa
dc.relation.referencesSilva TS, Meili L, Carvalho SHV et al (2017) Kinetics, isotherm, and thermodynamic studies of methylene blue adsorption from water by Mytella falcata waste. Environ Sci Pollut Res 24:19927–19937. https://doi.org/10.1007/s11356-017-9645-6spa
dc.relation.referencesSomsesta N, Sricharoenchaikul V, Aht-Ong D (2020) Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: Equilibrium and kinetic studies. Mater Chem Phys 240:122221. https://doi.org/10.1016/j.matchemphys.2019.122221spa
dc.relation.referencesSuzuki M (1990) Adsorption engineering, 1st edn. Elsevierspa
dc.relation.referencesTanyildizi MŞ (2011) Modeling of adsorption isotherms and kinetics of reactive dye from aqueous solution by peanut hull. Chem Eng J 168:1234–1240. https://doi.org/10.1016/j.cej.2011.02.021spa
dc.relation.referencesTariq SR, Safa Y (2017) An efficient of Sansevieria trifasciata plant as biosorbent for the treatment of metal contaminated industrial effluents. Baghdad Sci J 14:1spa
dc.relation.referencesTchegnitegni BT, Teponno RB, Tanaka C et al (2015) Sappanin-type homoisoflavonoids from Sansevieria trifasciata Prain. Phytochem Lett 12:262–266. https://doi.org/10.1016/j.phytol.2015.04.017spa
dc.relation.referencesThomas HC (1944) Heterogeneous ion exchange in a flowing system. J Am Chem Soc 66:1664–1666. https://doi.org/10.1021/ja01238a017spa
dc.relation.referencesTreviño-Cordero H, Juárez-Aguilar LG, Mendoza-Castillo DI et al (2013) Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water. Ind Crops Prod 42:315–323. https://doi.org/10.1016/j.indcrop.2012.05.029spa
dc.relation.referencesVedula SS, Yadav GD (2022) Wastewater treatment containing methylene blue dye as pollutant using adsorption by chitosan lignin membrane: development of membrane, characterization and kinetics of adsorption. J Indian Chem Soc 99:100263. https://doi.org/10.1016/j.jics.2021.100263spa
dc.relation.referencesWang L, Li J (2013) Adsorption of C.I. Reactive Red 228 dye from aqueous solution by modified cellulose from flax shive: kinetics, equilibrium, and thermodynamics. Ind Crops Prod 42:153–158. https://doi.org/10.1016/j.indcrop.2012.05.031spa
dc.relation.referencesWu Z, Huang W, Shan X, Li Z (2020) Preparation of a porous graphene oxide/alkali lignin aerogel composite and its adsorption properties for methylene blue. Int J Biol Macromol 143:325–333. https://doi.org/10.1016/j.ijbiomac.2019.12.017spa
dc.relation.referencesZhou K, Yang Z, Liu Y, Kong X (2015) Kinetics and equilibrium studies on biosorption of Pb(II) from aqueous solution by a novel biosorbent: Cyclosorus interruptus. J Environ Chem Eng 3:2219–2228. https://doi.org/10.1016/j.jece.2015.08.002spa
dc.subject.proposalResidual adsorbenteng
dc.subject.proposalContinuouseng
dc.subject.proposalDiscontinuouseng
dc.subject.proposalAdsorptioneng
dc.subject.proposalMethylene blueeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/draftspa
dc.relation.citationendpage9698spa
dc.relation.citationstartpage9688spa
dc.relation.citationvolume30spa
dc.type.coarversionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cfspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional (CC BY 4.0)