Mostrar el registro sencillo del ítem

dc.rights.licenseAtribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0)spa
dc.contributor.authorEPENI-TOMBO, GENIAL BELVINEL
dc.contributor.authorRodríguez Gámez, María
dc.contributor.authorLoor Castillo, Guillermo Antonio
dc.contributor.authorVázquez Pérez, Antonio
dc.contributor.authorNúñez Alvarez, José Ricardo
dc.date.accessioned2023-03-02T16:33:34Z
dc.date.available2023-03-02T16:33:34Z
dc.date.issued2023
dc.identifier.issn2088-8708spa
dc.identifier.urihttps://hdl.handle.net/11323/9941
dc.description.abstractThe research analyzes the influence of the average temperature on the performance of specific photovoltaic solar modules under the environmental conditions of the city of Portoviejo, province of Manabí, Ecuador. The research is carried out using the qualitative methodology. Its main objective is to determine the influence of temperature on the energy performance of photovoltaic modules under the region's environmental conditions. Two electrical diagrams with different configurations were designed, which were analyzed and simulated using the MATLAB Simulink software. The results obtained show the direct relationship between the electrical parameters of voltage, current intensity, and power with the temperature value on the surface of the modules. It is concluded that the modules generate a higher value of voltage, electric current intensity, and electric power at a lower temperature, regardless of the level of solar irradiation they receive.eng
dc.format.extent9 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInstitute of Advanced Engineering and Science (IAES)spa
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/spa
dc.sourcehttps://ijece.iaescore.com/index.php/IJECE/article/view/27322spa
dc.titleInfluence of ambient temperature in the city of Portoviejo, Ecuador on the energy performance of photovoltaic modules
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.11591/ijece.v13i1.pp46-54
dc.identifier.eissn2722-2578spa
dc.coverage.cityPortoviejo
dc.coverage.countryEcuador
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.publisher.placeIndonesiaspa
dc.relation.ispartofjournalnternational Journal of Electrical and Computer Engineeringspa
dc.relation.references[1] Y. Du, K. Xiang, Y. Li, C. Lin, X. Huang, and H. Lin, “Research on relationship between energy-economy-environment and index system under the new situation,” in 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), May 2019, pp. 2932–2935, doi: 10.1109/ISGT-Asia.2019.8881194.spa
dc.relation.references[2] E. V. M. Merchán, M. D. V. Gutiérrez, D. A. M. Montenegro, J. R. N. Alvare, and J. W. G. Guerrero, “An analysis of electricity generation with renewable resources in Germany,” International Journal of Energy Economics and Policy, vol. 10, no. 5, pp. 361–367, Aug. 2020, doi: 10.32479/ijeep.9369.spa
dc.relation.references[3] K. Palomino, F. Reyes, J. Núñez, G. Valencia, and R. H. Acosta, “Wind speed prediction based on univariate ARIMA and OLS on the Colombian Caribbean coast,” Journal of Engineering Science and Technology Review, vol. 13, no. 3, pp. 200–205, 2020, doi: 10.25103/jestr.133.22.spa
dc.relation.references[4] IRENA, “Global Atlas for renewable energy.” Accessed: Jan. 12, 2022. [Online]. Available: https://www.irena.org/globalatlas.spa
dc.relation.references[5] UN Environment Programme, “Emissions gap report 2019,” 2019. Accessed: Jan. 02, 2022. [Online]. Available: https://www.unep.org/resources/emissions-gap-report-2019.spa
dc.relation.references[6] United Nations Conference on Trade and Development (UNCTAD), “The least developed countries report 2017,” 2017. Accessed: Jan. 04, 2022. [Online]. Available: https://unctad.org/system/files/official-document/ldcr2017_en.pdf.spa
dc.relation.references[7] D. L. Cadavid, K. G. S. Serna, A. V. Arias, and C. J. Franco, “Cities and the sun: grid parity of electricity generation with photovoltaic systems in homes in Colombia,” ACE: Architecture, City and Environment, vol. 15, no. 43, Jun. 2020, doi: 10.5821/ace.15.43.8772.spa
dc.relation.references[8] F. A. B. Budes, G. V. Ochoa, L. G. Obregon, A. Arango-Manrique, and J. R. N. Álvarez, “Energy, economic, and environmental evaluation of a proposed solar-wind power on-grid system using HOMER Pro®: a case study in Colombia,” Energies, vol. 13, no. 7, Apr. 2020, doi: 10.3390/en13071662.spa
dc.relation.references[9] J. G. Rueda-Bayona, A. Guzmán, J. J. C. Eras, R. Silva-Casarín, E. Bastidas-Arteaga, and J. Horrillo-Caraballo, “Renewables energies in Colombia and the opportunity for the offshore wind technology,” Journal of Cleaner Production, vol. 220, pp. 529–543, May 2019, doi: 10.1016/j.jclepro.2019.02.174.spa
dc.relation.references[10] Y. Muñoz, D. Zafra, V. Acevedo, and A. Ospino, “Analysis of energy production with different photovoltaic technologies in the Colombian geography,” IOP Conference Series: Materials Science and Engineering, vol. 59, Jun. 2014, doi: 10.1088/1757- 899X/59/1/012012.spa
dc.relation.references[11] J. Crepaldi, M. M. Amoroso, and O. H. Ando, “Analysis of the topologies of power filters applied in distributed generation Units - review,” IEEE Latin America Transactions, vol. 16, no. 7, pp. 1892–1897, Jul. 2018, doi: 10.1109/TLA.2018.8447354.spa
dc.relation.references[12] L. Chen et al., “Coordination of SMES, SFCL and distributed generation units for micro-grid stability enhancement via wireless communications,” IEEE Access, vol. 6, pp. 36699–36710, 2018, doi: 10.1109/ACCESS.2018.2847463.spa
dc.relation.references[13] P. Benalcazar, J. Lara, and M. Samper, “Distributed photovoltaic generation in Ecuador: Economic analysis and incentives mechanisms,” IEEE Latin America Transactions, vol. 18, no. 03, pp. 564–572, Mar. 2020, doi: 10.1109/TLA.2020.9082728.spa
dc.relation.references[14] M. Saltos-Rodríguez, M. Aguirre-Velasco, A. Velásquez-Lozano, and D. Ortiz-Villalba, “Optimal placement and sizing of distributed generation in a radial distribution system for resilience enhancement against volcanic eruptions,” in CIRED 2021 - The 26th International Conference and Exhibition on Electricity Distribution, 2021, pp. 2462–2466, doi: 10.1049/icp.2021.2007.spa
dc.relation.references[15] E.-T. G. Belvinel, G. A. Loor, J. C. H. Chilan, and M. R. Gamez, “Photovoltaic system implementation in Baltra and Puerto Ayora Islands,” International journal of life sciences, vol. 2, no. 3, pp. 20–27, Sep. 2018, doi: 10.29332/ijls.v2n3.200.spa
dc.relation.references[16] A. Gok, E. Ozkalay, G. Friesen, and F. Frontini, “The influence of operating temperature on the performance of BIPV modules,” IEEE Journal of Photovoltaics, vol. 10, no. 5, pp. 1371–1378, Sep. 2020, doi: 10.1109/JPHOTOV.2020.3001181.spa
dc.relation.references[17] S. Regondi, H. Hanifi, and J. Schneider, “Modeling and simulation of the influence of interconnection losses on module temperature in moderate and desert regions,” IEEE Journal of Photovoltaics, vol. 9, no. 5, pp. 1449–1455, Sep. 2019, doi: 10.1109/JPHOTOV.2019.2924406.spa
dc.relation.references[18] S. Chandra, A. Yadav, M. A. R. Khan, M. Pushkarna, M. Bajaj, and N. K. Sharma, “Influence of artificial and natural cooling on performance parameters of a solar PV system: A case study,” IEEE Access, vol. 9, pp. 29449–29457, 2021, doi: 10.1109/ACCESS.2021.3058779.spa
dc.relation.references[19] P. Maffezzoni, L. Codecasa, and D. D’Amore, “Modeling and simulation of a hybrid photovoltaic module equipped with a heatrecovery system,” IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4311–4318, Nov. 2009, doi: 10.1109/TIE.2009.2020704.spa
dc.relation.references[20] W. Obaid, A.-K. Hamid, and C. Ghenai, “Solar/wind pumping system with forecasting in Sharjah, United Arab Emirates,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 4, pp. 2752–2759, Aug. 2021, doi: 10.11591/ijece.v11i4.pp2752-2759.spa
dc.relation.references[21] S. Kumar, Apoorva, and P. K. Sadhu, “MATLAB-based simulation to analyze the aftermath of partial shading on solar cell,” in 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC), Apr. 2018, pp. 437–441, doi: 10.1109/PEEIC.2018.8665486.spa
dc.relation.references[22] A. Vázquez and M. Rodríguez, Photovoltaic energy in the province of Manabí. Ediciones UTM-Unidad de Cooperación Universitaria, 2018.spa
dc.relation.references[23] C. C. Merizalde, “Regulation No. CONELEC–003/02: Prices of energy produced with resources non-conventional renewable energy,” (in Spanish), El Directorio del Consejo Nacional de Electricidad Conelec, 2002. Accessed: Dec. 17, 2021. [Online]. Available: http://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2015/12/CONELECPreciosEnergiaRenovable003_02.pdfspa
dc.relation.references[24] C. C. Merizalde, “Regulation No. CONELEC–004/04: Prices of energy produced with resources non-conventional renewable energy,” (in Spanish), El Directorio del Consejo Nacional de Electricidad Conelec, 2004. Accessed: Jan. 08, 2022. [Online]. Available: https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2015/12/CONELEC-PreciosRenovables3.pdfspa
dc.relation.references[25] C. C. Merizalde, “Regulation No. CONELEC – 009/06: Prices of energy produced with resources non-conventional renewable energy,” (in Spanish), El Directorio del Consejo Nacional de Electricidad Conelec, 2006. Accessed: Dec. 22, 2021. [Online]. Available: https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2015/12/CONELEC-PreciosRenovables4.pdfspa
dc.relation.references[26] CONELEC, “Regulation CONELEC-004/11: Prices of energy produced with resources non-conventional renewable energy,” (in Spanish), El Directorio del Consejo Nacional de Electricidad Conelec, 2012. Accessed: Dec. 02, 2021. [Online]. Available: https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2015/10/CONELEC_004_11_ERNC.pdfspa
dc.relation.references[27] C. C. Merizalde, “Regulation CONELEC-001/13: Prices of energy produced with resources non-conventional renewable energy,” (in Spanish), El Directorio del Consejo Nacional de Electricidad Conelec, 2014. Accessed: Dec. 16, 2021. [Online]. Available: https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2015/10/Codificación-Regulacion-001_13-EnergiasRenovables_.pdfspa
dc.relation.references[28] L. Peña-Pupo, H. Martínez-García, E. García-Vílchez, E. Y. Fariñas-Wong, and J. R. Núñez-Álvarez, “Combined method of flowreduced dump load for frequency control of an autonomous micro-hydropower in AC microgrids,” Energies, vol. 14, no. 23, Dec. 2021, doi: 10.3390/en14238059.spa
dc.relation.references[29] ATLAS, “Agency for the regulation and control of energy and non-renewable natural resources,” Ecuadorian Electricity Sector, 2020. Accessed: Dec. 08, 2021. [Online]. Available: https://www.controlrecursosyenergia.gob.ec/wpcontent/uploads/downloads/2021/06/Atlas-2020-baja.pdfspa
dc.relation.references[30] F. L. M. Maldonado and K. A. Y. Yánez, “The environmental constitutionalism in Ecuador,” (in Spanish), Actualidad Jurídica Ambiental, 2020. Accessed: Dec. 16, 2021. [Online]. Available: https://www.actualidadjuridicaambiental.com/wpcontent/uploads/2020/01/2020_01_07_Mila_Constitucionalismo-ambiental-Ecuador.pdfspa
dc.relation.references[31] J. R. Nuñez-Alvarez, I. F. Benítez-Pina, and Y. Llosas-Albuerne, “Communications in flexible supervisor for laboratory research in renewable energy,” IOP Conference Series: Materials Science and Engineering, vol. 844, Jun. 2020, doi: 10.1088/1757- 899X/844/1/012016.spa
dc.relation.references[32] S. Chandra, S. Agrawal, and D. S. Chauhan, “Effect of ambient temperature and wind speed on performance ratio of polycrystalline solar photovoltaic module: An experimental analysis,” International Energy Journal, vol. 18, no. 2, pp. 171–180, 2018.spa
dc.relation.references[33] A. Hidalgo, L. Villacrés, R. Hechavarría, and D. Moya, “Proposed integration of a photovoltaic solar energy system and energy efficient technologies in the lighting system of the UTA-Ecuador,” Energy Procedia, vol. 134, pp. 296–305, Oct. 2017, doi: 10.1016/j.egypro.2017.09.529.spa
dc.relation.references[34] N. Standard, “Energy efficiency in residential buildings,” Ecuadorian Construction Standar, 2018.spa
dc.relation.references[35] A. Vásquez, M. Rodríguez, W. M. Saltos, C. G. Rodríguez, and L. Cuenca, “Energy, economic and environmental performance of a 3.4 KWp photovoltaic power plant in the distributed generation (DG) mode,” Revista Espacios, vol. 39, no. 47, 2018.spa
dc.subject.proposalElectric powereng
dc.subject.proposalElectrical parameterseng
dc.subject.proposalEnergy losseseng
dc.subject.proposalEnergy performanceeng
dc.subject.proposalPhotovoltaic systemeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.citationendpage54spa
dc.relation.citationstartpage46spa
dc.relation.citationissue1spa
dc.relation.citationvolume13spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Atribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0)