Show simple item record

dc.rights.licenseAtribución 4.0 Internacional (CC BY 4.0)spa
dc.contributor.authorJiménez-Cabas, Javier
dc.contributor.authorTorres, Lizeth
dc.contributor.authorLozoya-Santos, Jorge de Jesús
dc.identifier.citationJiménez-Cabas, J.; Torres, L.; Lozoya-Santos, J.J. Twitter Data Mining for the Diagnosis of Leaks in Drinking Water Distribution Networks. Sustainability 2023, 15, 5113. su15065113spa
dc.description.abstractThis article presents a methodology for using data from social networks, specifically from Twitter, to diagnose leaks in drinking water distribution networks. The methodology involves the collection of tweets from citizens reporting leaks, the extraction of information from the tweets, and the processing of such information to run the diagnosis. To demonstrate the viability of this methodology, 358 Twitter leak reports were collected and analyzed in Mexico City from 1 May to 31 December 2022. From these reports, leak density and probability were calculated, which are metrics that can be used to develop forecasting algorithms, identify root causes, and program repairs. The calculated metrics were compared with those calculated through telephone reports provided by SACMEX, the entity that manages water in Mexico City. Results show that metrics obtained from Twitter and phone reports were highly comparable, indicating the usefulness and reliability of social media data for diagnosing leaks.eng
dc.format.extent16 páginasspa
dc.publisherMDPI AGspa
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.titleTwitter data mining for the diagnosis of leaks in drinking water distribution networkseng
dc.typeArtículo de revistaspa
dc.identifier.doi10.3390/ su15065113
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.relation.references1. Ling, T. A Global Study about Water Crisis. In Proceedings of the 2021 International Conference on Social Development and Media Communication (SDMC 2021), Sanya, China, 26–28 November 2021; Atlantis Press: Paris , France, 2022; pp. 809–
dc.relation.references2. Briseño, H.; Sánchez, A. Decentralization, consolidation, and crisis of urban water management in Mexico. Tecnol. y Cienc. Del Agua 2018, 9, 25–47. [CrossRef]spa
dc.relation.references3. Khalifa, D.S.; El Atty, A.; Donia, N.S.; Moussa, A.; Mohamed, A. Analysis and Assessment of Water Losses in Domestic Water Distribution Networks. J. Environ. Sci. 2022, 51, 1–23. [CrossRef]spa
dc.relation.references4. Verde, C.; Torres, L. Modeling and Monitoring of Pipelines and Networks: Advanced Tools for Automatic Monitoring and Supervision of Pipelines; Springer: Berlin/Heidelberg, Germany, 2017; Volume
dc.relation.references5. Carpentier, P.; Cohen, G. State estimation and leak detection in water distribution networks. Civ. Eng. Syst. 1991, 8, 247–257. [CrossRef]spa
dc.relation.references6. Pérez, R.; Puig, V.; Pascual, J.; Quevedo, J.; Landeros, E.; Peralta, A. Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks. Control Eng. Pract. 2011, 19, 1157–1167. [CrossRef]spa
dc.relation.references7. Soldevila, A.; Blesa, J.; Tornil-Sin, S.; Duviella, E.; Fernandez-Canti, R.M.; Puig, V. Leak localization in water distribution networks using a mixed model-based/data-driven approach. Control Eng. Pract. 2016, 55, 162–173. [CrossRef]spa
dc.relation.references8. Li, X.; Wen, Y.; Jiang, J.; Daim, T.; Huang, L. Identifying potential breakthrough research: A machine learning method using scientific papers and Twitter data. Technol. Forecast. Soc. Chang. 2022, 184, 122042. [CrossRef]spa
dc.relation.references9. Sakaki, T.; Okazaki, M.; Matsuo, Y. Earthquake shakes twitter users: Real-time event detection by social sensors. In Proceedings of the 19th International Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010; pp. 851–
dc.relation.references10. Jordan, S.E.; Hovet, S.E.; Fung, I.C.H.; Liang, H.; Fu, K.W.; Tse, Z.T.H. Using Twitter for public health surveillance from monitoring and prediction to public response. Data 2018, 4, 6. [CrossRef]spa
dc.relation.references11. Bonifazi, G.; Breve, B.; Cirillo, S.; Corradini, E.; Virgili, L. Investigating the COVID-19 vaccine discussions on Twitter through a multilayer network-based approach. Inf. Process. Manag. 2022, 59, 103095. [CrossRef]spa
dc.relation.references12. Pascual-Ferrá, P.; Alperstein, N.; Barnett, D.J. Social Network Analysis of COVID-19 Public Discourse on Twitter: Implications for Risk Communication. Disaster Med. Public Health Prep. 2022, 16, 561–569. [CrossRef] [PubMed]spa
dc.relation.references13. Pilaˇrová, L.; Kvasniˇcková Stanislavská, L.; Pilaˇr, L.; Balcarová, T.; Pitrová, J. Cultured Meat on the Social Network Twitter: Clean, Future and Sustainable Meats. Foods 2022, 11, 2695. [CrossRef] [PubMed]spa
dc.relation.references14. Rahman, S.; Jahan, N.; Sadia, F.; Mahmud, I. Social crisis detection using Twitter based text mining-a machine learning approach. Bull. Electr. Eng. Inform. 2023, 12, 1069–1077. [CrossRef]spa
dc.relation.references15. Qorib, M.; Oladunni, T.; Denis, M.; Ososanya, E.; Cotae, P. COVID-19 vaccine hesitancy: Text mining, sentiment analysis and machine learning on COVID-19 vaccination twitter dataset. Expert Syst. Appl. 2023, 212, 118715. [CrossRef]spa
dc.relation.references16. Choi, Y.J.C.E.J. The Early Emotional Responses and Central Issues of People in the Epicenter of the COVID-19 Pandemic: An Analysis from Twitter Text Mining. Int. J. Ment. Health Promot. 2023, 25, 21–29. [CrossRef]spa
dc.relation.references17. Zarrabeitia-Bilbao, E.; Rio-Belver, R.M.; Alvarez-Meaza, I.; de Alegría-Mancisidor, I.M. World Environment Day: Understanding Environmental Programs Impact on Society Using Twitter Data Mining. Soc. Indic. Res. 2022, 164, 263–284. [CrossRef]spa
dc.relation.references18. Alhuzali, H.; Zhang, T.; Ananiadou, S. Emotions and Topics Expressed on Twitter During the COVID-19 Pandemic in the United Kingdom: Comparative Geolocation and Text Mining Analysis. J. Med Internet Res. 2022, 24, e40323. [CrossRef]spa
dc.relation.references19. Behzadidoost, R.; Hasheminezhad, M.; Farshi, M.; Derhami, V.; Alamiyan-Harandi, F. A framework for text mining on Twitter: A case study on joint comprehensive plan of action (JCPOA)-between 2015 and 2019. Qual. Quant. 2022, 56, 3053–3084. [CrossRef]spa
dc.relation.references20. Arumugam, S.S. Development of argument based opinion mining model with sentimental data analysis from twitter content. Concurr. Comput. Pract. Exp. 2022, 34, e6956. [CrossRef]spa
dc.relation.references21. Jiang, J.Y.; Zhou, Y.; Chen, X.; Jhou, Y.R.; Zhao, L.; Liu, S.; Yang, P.C.; Ahmar, J.; Wang, W. COVID-19 Surveiller: Toward a robust and effective pandemic surveillance system based on social media mining. Philos. Trans. R. Soc. A 2022, 380, 20210125. [CrossRef]spa
dc.relation.references22. Vukmirovic, M.; Raspopovic Milic, M.; Jovic, J. Twitter Data Mining to Map Pedestrian Experience of Open Spaces. Appl. Sci. 2022, 12, 4143. [CrossRef]spa
dc.relation.references23. Khetarpaul, S.; Sharma, D.; Jose, J.I.; Saragur, M. Real-Time Detection and Visualization of Traffic Conditions by Mining Twitter Data. In Proceedings of the Australasian Database Conference, Sydney, Australia, 3–4 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 141–
dc.relation.references24. de Bruijn, J.A.; de Moel, H.; Jongman, B.; de Ruiter, M.C.; Wagemaker, J.; Aerts, J.C. A global database of historic and real-time flood events based on social media. Sci. Data 2019, 6, 1–12. [CrossRef]spa
dc.relation.references25. De Bruijn, J.A.; de Moel, H.; Jongman, B.; Wagemaker, J.; Aerts, J.C. TAGGS: Grouping tweets to improve global geoparsing for disaster response. J. Geovisualization Spat. Anal. 2018, 2, 1–14. [CrossRef]spa
dc.relation.references26. Sarker, A.; O’connor, K.; Ginn, R.; Scotch, M.; Smith, K.; Malone, D.; Gonzalez, G. Social media mining for toxicovigilance: automatic monitoring of prescription medication abuse from Twitter. Drug Saf. 2016, 39, 231–240. [CrossRef] [PubMed]spa
dc.relation.references27. Gerber, M.S. Predicting crime using Twitter and kernel density estimation. Decis. Support Syst. 2014, 61, 115–125. [CrossRef]spa
dc.relation.references28. Isermann, R. Fault-Diagnosis Applications: Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-Tolerant Systems; Springer Science & Business Media: Berlin, Germany,
dc.relation.references29. Gonzalez-Jimenez, D.; Del-Olmo, J.; Poza, J.; Garramiola, F.; Madina, P. Data-driven fault diagnosis for electric drives: A review. Sensors 2021, 21, 4024. [CrossRef]spa
dc.relation.references30. Tinka, A.; Rafiee, M.; Bayen, A.M. Floating sensor networks for river studies. IEEE Syst. J. 2012, 7, 36–49. [CrossRef]spa
dc.relation.references31. Canepa, E.; Odat, E.; Dehwah, A.; Mousa, M.; Jiang, J.; Claudel, C. A sensor network architecture for urban traffic state estimation with mixed eulerian/lagrangian sensing based on distributed computing. In Proceedings of the International Conference on Architecture of Computing Systems, Lubeck, Germany, 25–28 February 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 147–
dc.relation.references32. Hirt, C.; Amsden, A.; Cook, J. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 1974, 14, 227–253. [CrossRef]spa
dc.relation.references33. Goodchild, M.F. Citizens as sensors: The world of volunteered geography. GeoJournal 2007, 69, 211–221. [CrossRef]spa
dc.relation.references34. Yoon, S.; Elhadad, N.; Bakken, S. A practical approach for content mining of tweets. Am. J. Prev. Med. 2013, 45, 122–129. [CrossRef]spa
dc.relation.references35. Ralston, M.R.; O’Neill, S.; Wigmore, S.J.; Harrison, E.M. An exploration of the use of social media by surgical colleges. Int. J. Surg. 2014, 12, 1420–1427. [CrossRef]spa
dc.relation.references36. Kayed, M.; Dakrory, S.; Ali, A.A. Postal address extraction from the web: A comprehensive survey. Artif. Intell. Rev. 2021, 55, 1085–1120. [CrossRef]spa
dc.subject.proposalLeak diagnosiseng
dc.subject.proposalSocial sensorseng
dc.subject.proposalSocial network dataeng
dc.subject.proposalText miningeng

Files in this item


This item appears in the following Collection(s)

  • Artículos científicos [2753]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Show simple item record

Atribución 4.0 Internacional (CC BY 4.0)
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional (CC BY 4.0)