ALMOST CONTRA (I, J)-CONTINUOUS MULTIFUNCTIONS

Ennis Rosas ${ }^{[T / 2]}$, Carlos Carpintero ${ }^{T \pi}$ and José Sanabria ${ }^{[\square]}$

Abstract

The purpose of the present paper is to introduce, study and characterize the upper and lower almost contra (I, J)-continuous multifunctions. Also, we investigate its relation with another well known class of continuous multifunctions.

AMS Mathematics Subject Classification (2010): 54C10; 54C08; 54C05; 54C60

Key words and phrases: weakly (I, J)-continuous multifunctions; upper almost contra (I, J)-continuous multifunctions; I-regular open set; I regular closed set; contra (I, J)-continuous multifunctions

1. Introduction

It is well known today, that the notion of multifunction is playing a very important role in general topology, upper and lower continuity have been extensively studied on multifunctions $F:(X, \tau) \rightarrow(Y, \sigma)$. Currently using the notion of topological ideal, different types of upper and lower continuity in multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma)$ have been studied and characterized [2], [6], [7], [14], [17]. The concept of ideal topological space has been introduced and studied by Kuratowski[[]] and the local function of a subset A of a topological space (X, τ) was introduced by Vaidyanathaswamy [16] as follows: given a topological space (X, τ) with an ideal I on X and if $P(X)$ is the set of all subsets of X, a set operator $(,)^{*}: P(X) \rightarrow P(X)$, called the local function of A with respect to τ and I, is defined as follows: for $A \subseteq X, A^{*}(\tau, I)=\{x \in X / U \cap A \notin I$ for every $\left.U \in \tau_{x}\right\}$, where $\tau_{x}=\{U \in \tau: x \in U\}$. A Kuratowski closure operator $c l^{*}($,$) for a topology \tau^{*}(\tau, I)$ called the *-topology, finer than τ is defined by $c l^{*}(A)=A \cup A^{*}(\tau, I)$. We will denote $A^{*}(\tau, I)$ by A^{*}. In 1990 , Jankovic and Hamlett[g], introduced the notion of I-open set in a topological space (X, τ) with an ideal I on X. In 1992, Abd El-Monsef et al.[T] further investigated

[^0]I-open sets and I-continuous functions. In 2007, Akdag [Z] , introduce the concept of I-continuous multifunctions in a topological space with and ideal on it. Given a multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$, and two ideals I, J associate, now with the topological spaces (X, τ, I) and (Y, σ, J), consider the multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$. We want to study some type of upper and lower continuity of F as doing Rosas et al. [[73]. In this paper, we introduce, study and characterize a new class of multifunction called almost contra (I, J)-continuous multifunctions in topological spaces. Investigate its relation with another class of continuous multifunctions. Also its relation when the ideal $J=\{\emptyset\}$.

2. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces in which no separation axioms are assumed, unless explicitly stated and if I is and ideal on $X,(X, \tau, I)$ mean an ideal topological space. For a subset A of $(X, \tau), \operatorname{cl}(A)$ and $\operatorname{int}(A)$ denote the closure of A with respect to τ and the interior of A with respect to τ, respectively. A subset A is said to be regular open [IT]] (resp. semiopen [IIT], preopen[II]], semi-preopen [3]) if $A=\operatorname{int}(\operatorname{cl}(A))($ resp. $A \subseteq \operatorname{cl}(\operatorname{int}(A)), A \subseteq \operatorname{int}(\operatorname{cl}(A)), A \subseteq \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))))$. The complement of a regular open (resp. semiopen, semi-preopen) set is called regular closed (resp. semiclosed, semi-preclosed) set. A subset S of (X, τ, I) is an I-open[[] , if $S \subseteq \operatorname{int}\left(S^{*}\right)$. The complement of an I-open set is called I-closed set. The I-closure and the I-interior, can be defined in the same way as $\operatorname{cl}(A)$ and $\operatorname{int}(A)$. respectively, will be denoted by $I \operatorname{cl}(A)$ and $\operatorname{Iint}(A)$, respectively. A subset S of (X, τ, I) is an I-regular open (resp. I regular closed), if $S=\operatorname{Iint}(I \operatorname{cl}(S))$ (resp. $S=I \operatorname{cl}(\operatorname{Iint}(S)))$. The family of all I-open (resp. I-closed, I-regular open, I-regular closed, semiopen, semi closed, preopen, semi-preclosed) subsets of a (X, τ, I), denoted by $I O(X)$ (resp. $I C(X), I R O(X), I R C(X), S O(X), S C(X), P O(X), S P O(X), S P C(X))$. We set $I O(X, x)=\{A: A \in I O(X)$ and $x \in A\}$. It is well known that in a topological space $(X, \tau, I), X^{*} \subseteq X$ but if the ideal is codense, that is $\tau \cap I=\emptyset$, then $X^{*}=X$.
By a multifunction $F: X \rightarrow Y$, we mean a point-to-set correspondence from X into Y, also we always assume that $F(x) \neq \varnothing$ for all $x \in X$. For a multifunction $F: X \rightarrow Y$, the upper and lower inverse of any subset A of Y denoted by $F^{+}(A)$ and $F^{-}(A)$, respectively, that is $F^{+}(A)=\{x \in X: F(x) \subseteq A\}$ and $F^{-}(A)=\{x \in X: F(x) \cap A \neq \varnothing\}$. In particular, $F^{+}(y)=\{x \in X: y \in F(x)\}$ for each point $y \in Y$.
Definition 2.1. [14] A multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$ is said to be

1. upper weakly continuous if for each $x \in X$ and each open set V of Y such that $x \in F^{+}(V)$, there exists an open set U containing x such that $U \subseteq F^{+}(C l(V))$.
2. lower weakly continuous if for each $x \in X$ and each open set V of Y such that $x \in F^{-}(V)$, there exists an open set U containing x such that $u \in F^{-}(C l(V))$ for every $u \in U$.
3. weakly continuous if it is both upper weakly continuous and lower weakly continuous.

Definition 2.2. [2] A multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma)$ is said to be

1. upper I-continuous if for each $x \in X$ and each open set V of Y such that $x \in F^{+}(V)$, there exists an I-open set U containing x such that $U \subseteq F^{+}(V)$.
2. lower I-continuous if for each $x \in X$ and each open set V of Y such that $x \in F^{-}(V)$, there exists an I-open set U containing x such that $U \subseteq F^{-}(V)$.
3. I-continuous if it is both upper I-continuous and lower I-continuous.

Definition 2.3. [4] A multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma)$ is said to be

1. upper weakly I-continuous if for each $x \in X$ and each open set V of Y such that $x \in F^{+}(V)$, there exists an I-open set U containing x such that $U \subseteq F^{+}(C l(V))$.
2. lower weakly I-continuous if for each $x \in X$ and each open set V of Y such that $x \in F^{-}(V)$, there exists an I-open set U containing x such that $U \subseteq F^{-}(C l(V))$
3. weakly I-continuous if it is both upper weakly I-continuous and lower I-weakly continuous.

Definition 2.4. [13] A multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ is said to be:

1. upper weakly (I, J)-continuous at a point $x \in X$ if for each J-open set V such that $x \in F^{+}(V)$, there exists an I-open set U containing x such that $U \subseteq F^{+}(J C l(V))$
2. lower weakly (I, J)-continuous at a point $x \in X$ if for each J-open set V of Y such that $x \in F^{-}(V)$, there exists an I-open set U of X containing x such that $U \subseteq F^{-}(\operatorname{JCl}(V))$.
3. upper (resp. lower) (I, J)-continuous on X if it has this property at every point of X.

Theorem 2.5. [12] For a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$, the following statements are equivalent:

1. F is upper weakly (I, J)-continuous.
2. $F^{+}(V) \subseteq \operatorname{Iint}\left(F^{+}(J \operatorname{cl}(V))\right)$ for any J-open set V of Y.
3. $I \operatorname{cl}\left(F^{-}(J \operatorname{int}(B))\right) \subset F^{-}(B)$ for any every J-closed subset B of Y.

Theorem 2.6. [12] For a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$, the following statements are equivalent:

1. F is lower weakly (I, J)-continuous.
2. $F^{-}(V) \subseteq \operatorname{Iint}\left(F^{-}(J \operatorname{cl}(V))\right)$ for any J-open set V of Y.
3. $I \operatorname{cl}\left(F^{+}(\operatorname{Jint}(B))\right) \subset F^{+}(B)$ for any every J-closed subset B of Y.

Definition 2.7. [[i]] A multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ is said to be:

1. upper (I, J)-continuous at a point $x \in X$ if for each J-open set V such that $x \in F^{+}(V)$, there exists an I-open set U containing x such that $F(U) \subset V$.
2. lower (I, J)-continuous at a point $x \in X$ if for each J-open set V of Y such that $x \in F^{-}(V)$, there exists an I-open set U of X containing x such that $u \in F^{-}(V)$ for each $u \in U$.
3. upper (resp. lower) (I, J)-continuous on X if it has this property at every point of X.
Theorem 2.8. [17] For a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$, the following statements are equivalent:
4. F is lower weakly (I, J)-continuous.
5. $F^{-}(V) \subseteq \operatorname{Iint}\left(F^{-}(J \operatorname{cl}(V))\right)$ for any J-open set V of Y.
6. $I \operatorname{cl}\left(F^{+}(\operatorname{Jint}(B))\right) \subset F^{+}(B)$ for any every J-closed subset B of Y.

Definition 2.9. [IT] A multifunction $f:(X, \tau, I) \rightarrow(Y, \sigma, J)$ is said to be:

1. upper contra (I, J)-continuous if for each $x \in X$ if for each J-open set V such that $x \in F^{+}(V)$, there exists an I-open set U containing x such that $F(U) \subset V$.
2. lower contra (I, J)-continuous if for each $x \in X$ if for each J-open set V of Y such that $x \in F^{-}(V)$, there exists an I-open set U of X containing x such that $U \subseteq F^{-}(V)$.
3. contra (I, J)-continuous if it is upper contra (I, J)-continuous and lower contra (I, J)-continuous.

Definition 2.10. [5] A multifunction $f:(X, \tau, I) \rightarrow(Y, \sigma)$ is said to be:

1. upper almost contra I-continuous if for each $x \in X$ if for each regular closed set V such that $x \in F^{+}(V)$, there exists an I-open set U containing x such that $F(U) \subset V$.
2. lower almost contra I-continuous if for each $x \in X$ if for each regular closed set V of Y such that $x \in F^{-}(V)$, there exists an I-open set U of X containing x such that $U \subseteq F^{-}(V)$.
3. almost contra I-continuous if it is upper almost contra I-continuous and lower almost contra I-continuous.

3. Upper and Lower almost contra (I, J)-continuous multifunctions

Definition 3.1. A multifunction $f:(X, \tau, I) \rightarrow(Y, \sigma, J)$ is said to be:

1. upper almost contra (I, J)-continuous if for each $x \in X$ if for each J regular closed set V such that $x \in F^{+}(V)$, there exists an I-open set U containing x such that $F(U) \subset V$.
2. lower almost contra (I, J)-continuous if for each $x \in X$ if for each J regular closed set V of Y such that $x \in F^{-}(V)$, there exists an I-open set U of X containing x such that $U \subseteq F^{-}(V)$.
3. almost Contra (I, J)-continuous if it is upper almost contra (I, J)-continuous and lower almost contra (I, J)-continuous.

Example 3.2. Let $X=\mathbb{R}$ the set of real numbers with the topology $\tau=$ $\{\emptyset, \mathbb{R}, \mathbb{R} \backslash \mathbb{Q}\}, Y=\mathbb{R}$ with the topology $\sigma=\{\emptyset, \mathbb{R}, \mathbb{Q}\}$ and $I=\{\emptyset\}=\mathrm{J}$. Define $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ as follows: $F(x)=\mathbb{Q}$ if $x \in \mathbb{Q}$ and $F(x)=\mathbb{R} \backslash \mathbb{Q}$ if $x \in \mathbb{R} \backslash \mathbb{Q}$. Recall that in this case, the I-open sets are the preopen sets. It is easy to see that F is upper (resp. lower) almost contra (I, J)-continuous.

Example 3.3. Let $X=Y=\{a, b, c\}$ with two topologies $\tau=\{\emptyset, X,\{b\}\} \sigma=$ $\{\emptyset, Y,\{a\}\}$ and two ideals $I=\{\emptyset,\{a\}\}, J=\{\emptyset,\{b\}\}$. Define a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ as follows: $F(c)=\{b\}, F(b)=\{c\}$ and $F(a)=\{a\}$. It is easy to see that:
The set of all I-open is $\{\emptyset, X,\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}\}$.
The set of all J-open is $\{\emptyset,\{a\},\{c\},\{a, b\},\{a, c\}, Y\}$.
The set of all J-regular closed is $\{\emptyset,\{c\}, Y\}$.
It is easy to see that F is upper (resp. lower) almost contra (I, J)-continuous but is not upper (resp. lower) (I, J)-continuous on X.

Example 3.4. Let $X=Y=\{a, b, c\}$ with two topologies $\tau=\{\emptyset, X,\{b\}\} \sigma=$ $\{\emptyset, Y,\{a\}\}$ and two ideals $I=\{\emptyset,\{a\}\}, J=\{\emptyset,\{b\}\}$. Define a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ as follows: $F(a)=\{b\}, F(b)=\{c\}$ and $F(c)=\{a\}$. It is easy to see that:
The set of all I-open is $\{\emptyset, X,\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}\}$.
The set of all J-open is $\{\emptyset,\{a\},\{c\},\{a, b\},\{a, c\}, Y\}$.
The set of all J-regular closed is $\{\emptyset,\{c\},\{a, b\}, Y\}$.
It is easy to see that F is upper (resp. lower) (I, J)-continuous but is not upper (resp. lower) almost contra (I, J)-continuous on X.

Example 3.5. The multifunction F defined in Example [3.2, is upper (resp. lower) almost contra (I, J)-continuous but is not upper (resp. lower) (I, J) continuous on X and the multifunction F defined in Example [3.3, is upper (resp. lower) (I, J)-continuous but is not upper (resp. lower) almost contra (I, J)-continuous. In consequence, both concepts are independent of each other.

Theorem 3.6. For a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$, the following statements are equivalent:

1. F is upper almost contra (I, J)-continuous.
2. $F^{+}(V)$ is I-open for each J-regular closed set V of Y.
3. $F^{-}(K)$ is I-closed for every J-regular open subset K of Y.
4. $F^{-}(J \operatorname{int}(J \operatorname{cl}(B)))$ is I-closed for every J-open subset B of Y.
5. $F^{+}(J \operatorname{cl}(\operatorname{Jint}((V))))$ is I-open for every J-closed subset V of Y.

Proof. (1) $\Leftrightarrow(2)$: Let $x \in F^{+}(V)$ and V be any J-regular closed set of Y. From (1), there exists an I-open set U_{x} containing x such that $U_{x} \subset F^{+}(V)$. It follows that $F^{+}(V)=\bigcup_{x \in F^{+}(V)} U_{x}$. Since any union of I-open sets is I-open, $F^{+}(V)$ is I-open in (X, τ). The converse is similar.
$(2) \Leftrightarrow(3)$: Let K be any J - regular open set of Y. Then $Y \backslash K$ is a J-regular closed set of Y by $(2), F^{+}(Y \backslash K)=X \backslash F^{-}(K)$ is an I-regular open set. Then it is obtained that $F^{-}(K)$ is an I-regular closed set. The converse is similar. $(3) \Leftrightarrow(4)$: Let A be an I-open set of Y. Since $J \operatorname{int}(J \operatorname{cl}(B))$ is a J-regular open subset of Y, then by $(3), F^{-}(J \operatorname{int}(J \operatorname{cl}(B)))$ is an I-closed subset of X. The converse is clear.
$(5) \Leftrightarrow(2)$: It follows in the same form as $(3) \Leftrightarrow(4)$, only is necessary to see that $J \operatorname{cl}(\operatorname{Jint}((V)))$ is a J-regular closed set.

Theorem 3.7. For a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$, the following statements are equivalent:

1. F is lower almost contra (I, J)-continuous.
2. $F^{-}(V)$ is I-open for each J-regular closed set V of Y.
3. $F^{+}(K)$ is I-closed for every J-regular open subset K of Y.
4. $F^{+}(J i n t(J \operatorname{cl}(B)))$ is I-closed for every J-open subset B of Y.
5. $F^{-}(J \operatorname{cl}(\operatorname{Jint}((V))))$ is I-open for every J-closed subset V of Y.

Proof. The proof is similar to the proof of Theorem [3.6].
Remark 3.8. It is easy to see that if $J=\{\emptyset\}$ and $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ is upper (resp. lower) almost contra (I, J)-continuous then F is upper (resp. lower) almost contra I-continuous.
Remark 3.9. When the ideal $J=\{\emptyset\}$, the J-regular open sets are the regular open sets and then every almost contra I-continuous is upper (resp. lower) almost contra (I, J)-continuous.
Remark 3.10. When the ideal $J=\{\emptyset\}$, the notions of almost Contra (I, J) continuous and almost Contra I-continuous are the same.

Example 3.11. Let \mathbb{R} the real numbers with the usual topology, take $I=$ $J=\{\emptyset\}$. Define the multifunction $F: \mathbb{R} \rightarrow \mathbb{R}$ as $F(x)=\{x\}$. Recall that the I-open sets are the preopen sets. Observe that F is not: almost contra (I, J)-continuous, almost contra I-continuous but is (I, J)-continuous, weakly I-continuous.

Example 3.12. Let $X=Y=\{a, b, c\}$ with two topologies $\tau=\{\emptyset, X,\{b\}\}$ $\sigma=\{\emptyset, Y,\{a\}\}$ and two ideals $I=\{\emptyset,\{a\}\}, J=\{\emptyset,\{b\}\}$. Define a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ as follows: $f(a)=\{a\}, f(b)=\{c\}$ and $f(c)=\{b\}$. It is easy to see that:
The set of all I-open is $\{\emptyset, X,\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}\}$.
The set of all J-open is $\{\emptyset,\{a\},\{c\}\{a, b\},\{a, c\},\{b, c\}, Y\}$.
the set of all J-regular open is $\{\emptyset,\{a\},\{c\},\{a, b\},\{b, c\} Y\}$.
In consequence, F is not: upper (resp. lower) weakly (I, J)-continuous, upper(resp. lower) almost contra (I, J)-continuous, upper (resp. lower) (I, J) continuous, upper(resp. lower) contra (I, J)-continuous but F is upper(resp. lower) contra I-continuous.

Example 3.13. Let $X=Y=\{a, b, c\}$ with two topologies $\tau=\{\emptyset, X$, $\{b, c\}\}, \sigma=\{\emptyset, Y,\{b\}\}$ and two ideals $I=\{\emptyset,\{b\}\}, J=\{\emptyset,\{b\}\}$. Define a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ as follows: $f(a)=\{a\}, f(b)=\{c\}$ and $f(c)=\{b\}$. It is easy to see that:
The set of all I-open is $\{\emptyset, X,\{c\},\{a, c\},\{b, c\}\}$.
The set of all J-open is $\{\emptyset, Y,\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}\}$.
The set of all J-regular closed is $\{\emptyset, Y,\{b\},\{c\},\{a, b\},\{a, c\}\}$.
The set of all preopen sets in Y is $\{\emptyset, Y,\{b\},\{a, b\},\{b, c\}\}$.
Observe that F is almost contra (I, J)-continuous, almost contra $(I,\{\emptyset\})$ continuous but is not (I, J)-continuous, weakly I-continuous.

Remark 3.14. Observe that if the ideal $J \neq \emptyset$, the notions of almost Contra (I, J)-continuous multifunctions and the almost contra I-continuous multifunctions are independent.

Theorem 3.15. If $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ is upper (resp. lower) almost contra (I, J)-continuous multifunction then it is upper (resp. lower) weakly (I, J)-continuous multifunction.

Proof. Let $x \in X$ and V a J-open set containing $F(x)$. Follows that $J \operatorname{cl}(V)$ is a J-regular closed set of Y and $F(x) \subseteq J \mathrm{cl}(V)$. Using the hypothesis, there exists an I-open set U containing x such that $F(U) \subset J \operatorname{cl}(V)$. In consequence, F is upper weakly (I, J)-continuous. The proof for the case when F is lower almost contra (I, J)-continuous is similar.

The following example shows that the converse of the Theorem [3.15 is not necessarily true.

Example 3.16. In Example $\boldsymbol{K} \boldsymbol{\square}^{\boldsymbol{D}}$, the multifunction F is not almost contra (I, J)-continuous but is weakly (I, J)-continuous multifunction.

Theorem 3.17. If $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ is upper (resp. lower) contra (I, J) continuous multifunction then it is upper (resp. lower)almost contra (I, J) continuous multifunction.

Proof. Since every J-regular closed set is a J-closed set the result is clear.
The following example shows that the converse of the Theorem $\sqrt{3.17}$ is not necessarily true.

Example 3.18. Let $X=Y=\{a, b, c\}$ with two topologies $\tau=\{\emptyset, X$, $\{b, c\}\}, \sigma=\{\emptyset, Y,\{b\}\}$ and two ideals $I=\{\emptyset,\{b\}\}, J=\{\emptyset,\{b\}\}$. Define a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ as follows: $f(a)=\{b\}, f(b)=\{c\}$ and $f(c)=\{a\}$. It is easy to see that:
The set of all I-open is $\{\emptyset, X,\{c\},\{a, c\},\{b, c\}\}$.
The set of all J-open is $\{\emptyset, Y,\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}\}$. The set of all J regular open is $\{\emptyset, Y\}\}$.
Observe that F is is almost contra (I, J)-continuous multifunction but is not contra (I, J)-continuous.

Example 3.19. Let $X=Y=\{a, b, c\}$ with two topologies $\tau=\{\emptyset, X$,
$\{b, c\}\}, \sigma=\{\emptyset, Y,\{b\}\}$ and two ideals $I=\{\emptyset,\{b\}\}, J=\{\emptyset\}$. Define a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ as follows: $f(a)=\{b\}, f(b)=\{c\}$ and $f(c)=\{a\}$. It is easy to see that:
The set of all I-open is $\{\emptyset, X,\{c\},\{a, c\},\{b, c\}\}$.
The set of all J-open are the set of preopen sets $\{\emptyset, Y,\{b\},\{a, b\},\{a, c\}$, $\{b, c\}\}$.
The set of all J-regular open is $\{\emptyset, Y,\{a, c\},\{b\}\}$.
Observe that F is almost contra $(I,\{\emptyset\})$-continuous multifunction but is not contra ($I,\{\emptyset\}$)-continuous multifunction.

Example 3.20. Let \mathbb{R} the real numbers with the usual topology, take $I=$ $J=\{\emptyset\}$. Define the multifunction $F: \mathbb{R} \rightarrow \mathbb{R}$ as $F(x)=\{x\}$. Recall that the I-open sets are the preopen sets. Observe that F is not almost contra ($I,\{\emptyset\}$)-continuous but is contra I-continuous multifunction.

Remark 3.21. The notions of almost contra ($I,\{\emptyset\}$)-continuous multifunctions and contra I-continuous multifunctions are independent.

Example 3.22. Let $X=Y=\{a, b, c\}$ with two topologies $\tau=\{\emptyset, X$,
$\{b\}\} \sigma=\{\emptyset, Y,\{a\}\}$ and two ideals $I=\{\emptyset,\{a\}\}, J=\{\emptyset\}$. Define a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ as follows: $f(a)=\{a\}, f(b)=\{c\}$ and $f(c)=\{b\}$. It is easy to see that:
The set of all I-open is $\{\emptyset, X,\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}\}$.
The set of all J-open is $\{\emptyset, Y,\{a\},\{a, b\},\{a, c\}\}$.
the set of all J-regular open is $\{\emptyset, Y\}$.
In consequence, F is upper(resp. lower) almost contra (I, J)-continuous on X but is not upper (resp. lower) (I, J)-continuous

Remark 3.23. It is easy to see that if $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ is a multifunction and $J O(Y) \subset \sigma$. If F is upper (lower) almost contra I-continuous, then F is upper (lower) almost contra (I, J)-continuous. Even more, if $F:(X, \tau, I) \rightarrow$ (Y, σ, J) is a multifunction and $J O(Y) \nsubseteq \sigma$, we can find upper (resp. lower) al-

References

[1] Abd El-Monsef, M. E., Lashien, E. F., and Nasef, A. A. On I-open sets and I-continuos functions. Kyungpook Math. J. 32, 1 (1992), 21-30.
[2] Akdag, M. On upper and lower I-continuos multifunctions. Far East J. Math. Sci. 25, 1 (2007), 49-57.
[3] Andrijević, D. Semipreopen sets. Mat. Vesnik 38, 1 (1986), 24-32.
[4] Arivazhagi, C., and Rajesh, N. On upper and lower weakly I-continuous multifunctions. Ital. J. Pure Appl. Math. 36 (2016), 899-912.
[5] Arivazhagi, C., Rajesh, N., and Shanthi, S. On upper and lower almost contra I-continuous multifunctions. Int. J. Pure Appl. Math. 115, 4 (2017), 787-799.
[6] Ekici, E. Nearly continuous multifunctions. Acta Math. Univ. Comen. 72 (2003), 229-235.
[7] Ekici, E. Almost nearly continuous multifunctions. Acta Math. Univ. Comen. 73 (2004), 175-186.
[8] Janković, D., and Hamlett, T. R. Compatible extensions of ideals. Boll. Un. Mat. Ital. B (7) 6, 3 (1992), 453-465.
[9] Kuratowski, K. Topology. Academic Press, 1966.
[10] Levine, N. Semi-open sets and semi-continuity in topological spaces. Amer. Math. Montly 70, 1 (1963), 36-41.
[11] Mashhour, A. S., Abd El-Monsef, M. E., and El-Deeb, S. N. On precontinuous and weak precontinuous mappings. Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
[12] Rosas, E., and Carpintero, C. Upper and lower weakly (I, J)-continuous multifunctions. Submitted.
[13] Rosas, E., Carpintero, C., and Moreno, J. Upper and lower (I, J) continuous multifunctions. Int J. Pure Appl. Math. 117, 1 (2017), 87-97.
[14] Simithson, R. E. Almost and weak continuity for multifunctions. Bull. Calcutta Math. Soc. 70 (1978), 383-390.
[15] Stone, M. H. Applications of the theory of boolean rings to general topology. Trans. Amer. Math. Soc. 41, 3 (1937), 375-481.
[16] Vaidyanathaswamy, R. The localisation theory in set topology. Proc. Indian Acad. Sci. 20, 1 (1944), 51-61.
[17] Zorlutuna, I. ω-continuous multifunctions. Filomat 27, 1 (2013), 165-172.
Received by the editors May 9, 2018
First published online March 28, 2019

[^0]: ${ }^{1}$ Departamento de Ciencias Naturales y Exactas, Universidad de la Costa, Barranquilla, Colombia
 ${ }^{2}$ Departamento de Matemáticas, Universidad de Oriente, Cumaná, Venezuela. e-mail: ennisratael@gmail.com, erosas@cuc.edu.co
 ${ }^{3}$ Corresponding author
 ${ }^{4}$ Departamento de Matemáticas, Universidad de Oriente, Cumaná , Venezuela \& Vicerrectoría de Investigación, Universidad Autónoma del Caribe, Barranquilla, Colombia. e-mail: carpintero.carlos@gmail.com
 ${ }^{5}$ Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla, Colombia. e-mail: jesanabri@gmail.com; http://orcid.org/0000-0002-9749-4099

