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ABSTRACT

This work studies some elements of gravitational lensing by galaxies such as
the lens equation, deflection angle, lensing potential and time delay, modeling the
mass distribution of the lensing galaxy as an elliptical galaxy. The mass distribution
function ρ of the deflecting galaxy indicates that it has a nucleus with radius a in
its core, a free-form parameter b (b > a), and that the mass density of the nucleus
is ρ0. The mass density distribution ρ allows us to find the surface mass density Σ
(projected on the plane of the lens), followed by general elements of the gravitational
lens expressed in terms of the geometric parameters a and b. The relation between
these parameters is defined by the adimensional factor n = b/a > 1. The results of
this work can be applied to any galactic lens system to conduct an analysis based
on the temporal delay between two images and to determine the conditions that
must be satisfied by the parameter n.

RESUMEN

En este trabajo se estudian algunos elementos de las lentes gravitacionales
causadas por galaxias como son ecuación de la lente, ángulo de desviación, potencial
de desviación y retardo temporal, modelando la distribución volumétrica de masa
de la lente en forma eĺıptica. La función de distribución volumétrica de masa en
la galaxia deflectora ρ, contiene en su centro un núcleo de radio a, una densidad
volumétrica en su núcleo ρ0 y un parémetro libre de forma b (b > a). Mediante la
distribución de densidad volumétrica de masa se encuentra inicialmente la densidad
superficial de masa Σ, (proyectada en el plano de la lente), para después hallar los
elementos de una lente gravitacional, los cuales son totalmente generales y quedan
en términos de los parámetros geométricos a and b, que se han relacionado mediante
un factor adimensional n = b/a > 1. Los resultados encontrados se aplican a
cualquier sistema de lentes causado por una galaxia, para hacer un análisis basado
en el retardo temporal entre dos imágenes y ver las condiciones que debe cumplir
el parámetro n.

Key Words: galaxies: elliptical and lenticular — gravitation — gravitational lens-
ing: strong — gravitational lensing: weak

1. INTRODUCTION

In the study of gravitational lenses (GL), the dis-
tribution of mass density of the deflector (ρ) can be
projected onto a plane perpendicular to the line of
sight between the observer and the light source. This
plane is called the lens plane, according to Narayan
& Bartelmann (1997). The lens is assumed to be
thin and the distribution of the lens mass is substi-

1Universidad del Atlántico, Barranquilla, Colombia.
2Universidad de la Costa, CUC, Barranquilla, Colombia.
3Universidad Libre, Barranquilla, Colombia.

tuted by a plane on which the surface mass density
is (Σ), resulting in the so-called thin lens approxi-
mation, according to Schneider et al. (1992).

In general, GL are characterized by a few ba-
sic elements such as: surface mass density (Σ), lens
equation, deflection angle (α), lensing potential (Ψ)
and time delay (∆t), which constitute a set of basic
tools that can be used for the study of various types
of lens systems. The analytical expressions that de-
scribe these elements can be used to study specific
mass distribution models of a particular galaxy.
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172 MOLINA, VILORIA, & STEFFANELL

Some observational data show that astronomical
objects that act as lenses can be modeled in different
ways, according to Cohen & Hewitt (2000). In gravi-
tational lens systems produced by galaxies, some pa-
rameters can be observationally measured, such as:
dispersion velocity of the material particles that con-
stitute the lens (σp), angular position of the images
(θ), red shifts of the lens (zL), light source (zS) and
time delay (∆t). These parameters allow the study
and modelling of gravitational lens systems.

In these systems the distances from the light
source to the lens and from the lens to the observer
are ≈ 1 pc. Thus, the elements that constitute a
lens system, such as the deflecting galaxy, the light
source and the observer, are too far away, so that
light travels in free space most of the time, and is
deviated only when it passes through the lens. To
model a lens system, it is thus necessary to model
the universe through which the ray of light passes; to
do this we need to choose cosmological parameters,
such as those used by Adler et al. (1975), Ciufolini
et al. (1995), Foster et al. (1994) and Kenion (1995):
vacuum density (Ωv); matter density (Ωm); softness
parameter (α̃) and Hubble constant (H0).

Using observational values and specifying these
cosmological parameters makes it possible to apply
the general properties of GL to specific lens systems,
with different galactic models.

In this work, we assume a model of a galaxy
with an elliptical mass distribution (ρ), which we
use to determine the analytical expressions that de-
scribe the elements of GL according to Brainerd et
al. (1996) and Golse et al. (2002). Here we follow
Merritt & Valluri (1997) and Molina et al. (2006),
who propose a distribution of mass density useful for
models of elliptical galaxies acting as gravitational
lenses.

2. LENS COMPONENTS AND ELLIPTICAL
MODEL OF THE DEFLECTING GALAXY

2.1. Lens Elements

In the literature about GL, the approximation of
a flat lens is characterized by a surface mass den-
sity given by the projection operator, according to
Miranda, Molina, & Viloria (2014),

Σ(~R) =

∫
ρ(~R, z)dz, (1)

where ~R is a radius vector in the lens plane as shown
in Figure 1, and ρ is the mass distribution of the lens.
The radius vector R, called impact parameter, can
be written as R = ξ0x. The quantity ξ0 is known as

Fig. 1. Illustration of a gravitational lens system. The
angular separations of the source and the image from the
optical axis as seen by the observer are β and θ, respec-
tively. The angular diameter distances between the ob-
server and the source, the observer and the lens, and the
lens and the source are DS , DL and DLS , respectively.
See Narayan et al. (1997).

a scale parameter or scale factor, and is defined ac-
cording to the lens model being used. In this work,
it is defined below in equation (10). According to
Schneider et al. (1992, p. 231), the matter within
the disc of radius x around the center of mass con-
tributes to the deflection of the ray of light, while the
matter outside the disc (x′ < x ) does not contribute
importantly to the deflection; thus, the deflection an-
gle can be expressed as:

α(x) =
2

x

∫
x′κ(x′)dx′, (2)

where x′ < x. The quantity κ defined as
κ(x) = Σ(x)/Σcr is the so-called convergence, which
indicates the existence of a minimal or critical sur-
face density for the GL phenomenon to occur, ac-
cording to Narayan et al. (1997) and Schneider et al.
(1992). We define the critical mass surface density
as: Σcr = c2DS/4π ×G×DL ×DLS , where DS ,
DL and DLS , are the angular diameter distances be-
tween observer-source, observer-lens and lens-source,
respectively, as shown in Figure 1.

The lensing potential, according to Narayan et
al. (1997, p. 19) is defined by:

ψ =
1

π

∫
κ(x′) ln |x− x′| dx′2 . (3)

The time delay ∆t between two light beams de-
tected by an observer is given by Narayan et al.
(1997, p. 20) as:

∆t=
(1 + zL)

c

ξ20DS

DLDLS

(
1

2

[
α2

2−α2

1

]
− [ψ2 − ψ1]

)
,

(4)
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ELEMENTS OF A GRAVITATIONAL LENS SYSTEM 173

where zL is the redshift of the lensing galaxy, DL is
the angular diameter distance between observer and
lens, DS is the angular diameter distance between
observer and source, and DLS is the angular diame-
ter distance between lens and source.

Expression (4) contains the geometric delay de-
scribed by equation (2), and the gravitational poten-
tial given by equation (3).

Furthermore, the relationship between the source
position (β), the positions of the images ( θ = ξ/DL)
and the deflection angle can be writen according to
equation (2.15a) in Schneider et al., (1992, p.31) as:

β =
ξ0
DL

x− DLS

DS

α(x), (5)

which is called the lens equation. Equations (2), (3),
(4) and (5) constitute the set of basic elements re-
quired for the study of GL.

2.2. Model of an Elliptical Lensing Galaxy

For this study, we modeled the distribution of the
lens mass as an elliptical galaxy, following Merritt &
Valluri (1996) and Molina et al. (2006), who pro-
posed a distribution of mass density that fits ellipti-
cal galaxy models acting as gravitational lenses. The
analytical expressions of GL were developed based
on this mass distribution. This distribution of mass
can be written as:

ρ(r) =
ρ0(

1 + r2

a2

) (
1 + r2

b2

) . (6)

The model of a lensing galaxy contains a central
nucleus with radius a, a free-form parameter act-
ing as a scale factor b (b > a ), and a density of
the mass in the nucleus ρ0. Introducing the mass
density given in equation (6) into the projection op-
erator defined in equation (1), and substituting the
variables z2 = r2 −R2 (see Figure 1), we obtain the
surface mass density of the lens. The distance z is
typically much smaller than the distances between
observer and lens and between lens and source; thus
after evaluating the integrals, the surface mass den-
sity of the lens takes the following form,

Σ(n,R)=

∑
0
n2a

n2 − 1

[
1√

a2 +R2
− 1√

n2a2 +R2

]
,

(7)
where n = b/a > 1 is the adimensional parameter
and Σ0 = πρ0a is the surface density of the nucleus.

To find the analytical expressions of the deflec-
tion angle and the lensing potential, we first substi-
tute R = ξ0x, in equation (7), so that the surface

density of the flat lens is:

Σ(n, x)=

∑
0
n2a

(n2 − 1)ξ0

[
1√

A2 + x2
− 1√

n2A2 + x2

]
,

(8)
where A = a/ξ0 a new parameter. The convergence
factor κ = Σ/Σcr (defined above), now has the form:

κ(n, x) =
1

2

[
1√

A2 + x2
− 1√

n2A2 + x2

]
, (9)

and the chosen scale factor is:

ξ0 =
8πGDLDLSΣ0n

2a

c2DS(n2 − 1)
. (10)

The scale factor is based on the velocity disper-
sion of the components of the lensing galaxy σp (this
is explained in the following paragraphs). The scale
factor is expressed in terms of the central radius a,
and the adimensional parameter n = b/a > 1. When
the adimensional parameter approaches 1, that is,
n ≈ 1, the scale factor becomes infinite, which sug-
gest that it would be preferable to select a scale that
depended only on the radius a of the nucleus.

The time delay expressed in equation (4) con-
tains the arbitrary scale factor ξ0, that we chose
for the elliptical distribution of mass, as shown in
equation (10). The central mass density ρ0 cannot
be observationally measured in a gravitational lens
system, but it can be determined from the velocity
dispersion σp of the matter particles in the lensing
galaxy. This dispersion can be determined using the
expression proposed by Molina et al. (2006) and
Tremaine et al. (1994):

σ2

p =
2G

Σ(R)

∫
∞

R

M(r)

r2
ρ(r)

√
r2 −R2dr . (11)

Expression (11) shows that the central mass density
can be established if the velocity dispersion of the
matter particles in the lensing galaxy is known; this,
in turn, is used to determine the scale factor (10).

2.3. Deflection Angle

Expressed in terms of the impact parameter
R = ξ0x and using the convergence factor in equa-
tion (9), the deflection angle (2) takes the form,

α(n,R) =
(n− 1)a

R
+

√
1 +

a2

R2
−
√
1 +

n2a2

R2
, (12)

which is written in terms of the central radius a and
the adimensional parameter n = b/a > 1. It can
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174 MOLINA, VILORIA, & STEFFANELL

be seen that this parameter is close to 1, n ≈ 1,
so that, after selecting a scale factor, the deflection
angle becomes α(R) ≈ 0.

2.4. Lensing Potential

The lensing potential can be found by substitut-
ing (9) into equation (3) and writing the expression
in terms of the impact parameter R = ξ0x ,

ψ(n, R)=
a

ξ0

[

(n− 1) + ln
2a

ξ0
− n ln

2na

ξ0
+

√

1 +
R2

a2

−

√

n2 +
R2

a2
− ln

a(1 +
√

1 + R2

a2 )

ξ0

+n ln
a(n+

√

n2 + R2

a2 )

ξ0



 , (13)

given that n > 1. If this adimensional parameter is
close to 1, n ≈ 1, and if a scale factor is selected, the
lensing potential becomes zero, ψ(R) ≈ 0.

2.5. Time Delay

Differentiating the square of the deflection angle
of two images, α2

2−α2
1, then differentiating the lens-

ing potential ψ2 −ψ1, and substituting these deriva-
tives into equation (4), we obtain the time delay as:

∆t =
(1 + zL)ξ

2
0DS

cDLDLS

[
h(n, a)

2
− a

g(n, a)

ξ0

]
. (14)

Equation (13) allows us to determine the time
delay between two images, where a is the radius of
the nucleus of the lensing galaxy and n is an adimen-
sional parameter.

Furthermore, we have defined below two new
functions: h(n, a) and g(n, a), which depend on how
the nucleus radius a is set and on how much these
two new functions vary from the adimensional pa-
rameter n.

Function h(n, a) is written as:

h(n, a) = (n2 − n+ 1)

(
a2

R2
2

− a2

R2
1

)

+(n− 1)

[√
a2

R2
2

+
a4

R4
2

−
√
a2

R2
2

+
n2a4

R4
2

]

+(n− 1)

[√
a2

R2
1

+
n2a4

R4
1

−
√
a2

R2
1

+
a4

R4
1

]

−
√

1 +
a2

R2
2

+ n2
(
a2

R2
2

+
a4

R4
2

)

+

√
1 +

a2

R2
1

+ n2
(
a2

R2
1

+
a4

R4
1

)
. (15)

Similarly, g(n, a) is defined as:

g(n, a) =

√
1 +

R2
2

a2
−

√
1 +

R2
1

a2

+

√
n2 +

R2
1

a2
−
√
n2 +

R2
2

a2

+ ln

∣∣∣∣∣∣

1 +

√
1 +

R2

1

a2

1 +

√
1 +

R2

2

a2

∣∣∣∣∣∣

+n ln

∣∣∣∣∣∣

n+

√
n2 +

R2

2

a2

1 +

√
n2 +

R2

1

a2

∣∣∣∣∣∣
. (16)

h(n, a) and g(n, a) are normalized so that when they
are introduced into the time delay equation (14),
their units are expressed in seconds.

2.6. Lens Equation

By substituting the deflection angle (12) into
equation (5), we get,

β =
R

DL

− DLS

DS

(n− 1)a

R

−DLS

DS

[√
1 +

a2

R2
−
√

1 +
n2a2

R2

]
. (17)

This expression represents the lens equation in
the elliptical lens model we propose; it is a function
of the impact parameter and the adimensional pa-
rameter n.

3. APPLICATION OF THE PROPOSED
GRAVITATIONAL LENS MODEL TO THE

GRAVITATIONAL LENS B0218 + 357

The expressions obtained in the previous section
are completely general and can be applied to any
gravitational lens system. By way of example, we
choose to apply them to the B0218 + 357 lens sys-
tem in order to asses the consistency of the results
obtained.

Some researchers, including, Wucknitz et al.
(2004), have determined the Hubble constant H0

from the study of B0218 + 357 and discussed dif-
ferent models of this system. To obtain an estimate
of the Hubble constant Biggs et al. (1999) modeled
the B0218 + 357 system using the lens model used
by Kormann et al. (1994), in which the lens sys-
tem is described as a singular isothermal ellipsoid
(SIE). More information on the morphology of the
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TABLE 1

DATA OBSERVED FOR THE B0218 +357 LENS
SYSTEM

σp θ1 θ2 zL zS ∆t

km/s mas mas days

150 40 290 0.68 0.94 10.5± 0.2

observed images can be found in the work of Spin-
gola et al. (2015). Observational data for the lens
system B0218 + 357 obtained from the CASTLES
Survey by Cohen & Hewitt (2000) is summarized in
Table 1: the velocity dispersion σp, the angular po-
sitions of two images θ1 and θ2, the redshifts for the
lens zL and the source zS , and the difference in time
delay between the two images ∆t.

The cosmological parameters chosen for this work
are within the range of values most widely accepted
in the literature. We relied on the work of several au-
thors, and especially Kessler et al. (2009), Boughn &
Crittenden (2001), Bartelmann et al. (1997), Wein-
berg (1972), Grogin et al. (1996) and others. The
parameters chosen for our elliptical lens model are as
follows: Hubble constant, H0 = 76 (km/s)pc−1, vac-
uum density Ωv = 0.7, matter density Ωd = 0.3, and
softness parameter α̃ = 0.5. This softness parameter
of the matter in the universe is smoothly distributed
(i.e., it is not bound up in galaxies), according to
Dyer & Roeder (1973), see also P. Schneider et al.
(1992, p.138) and Xi Yang et al. (2013).

According to Dyer (1973) and Wucknitz et
al. (2004), using these cosmological parameters
for the gravitational lens system B0218 + 357 and
the values for the cross section DLDLS/DS , the
observer-lens distance DL, and the impact param-
eters of the two images R1 and R2, we obtain:
DLDLS/DS = 2·25× 107 pc, DL = 1·364× 109 pc,
R1 = 264·58 pc and R2 = 1918·21 pc.

From these values, it is possible to obtain the
elements of the proposed lens model.

3.1. Scale Factor, Surface Mass Density of the

Lens, Deflection Angle and Lensing Potential

Since there are two images in the lens sys-
tem B0218 + 357, the previous calculations of the
two impact parameters R1 = 264·58 pc and R2 =
1918·21 pc allow us to set the radius of the nucleus
within the range of values of these two parameters
(R1 and R2). In this work, we set the radius of the
nucleus at approximately the value of the smaller
impact parameter, a = 264 pc, which corresponds

to the impact parameter with the largest deflec-
tion. To facilitate the analysis, we define the adi-
mensional quantity λ as λ = R/a > 1. By setting
the radius of the nucleus and varying the impact pa-
rameter according to it, we can also set the surface
density of the nucleus at the approximate value of
Σ0 = 58.62kg/m2.

Furthermore, the scale factor in equation (10) is
given in terms of the adimensional parameter n, that
is,

ξ0 = (200·16 pc)
n2

(n2 − 1)
, (18)

where 1pc = 3.086× 1016 m. The surface mass den-
sity of the lens, expressed in equation (8) is then
found to be

Σ(n, λ) =
58·62n

2

n2 − 1

[
1√

1 + λ2
− 1√

n2 + λ2

]
kg/m2

(19)
where, for this particular lens, the impact parameter
satisfies the condition 1 ≤ λ ≤ 7.25 and n > 1.
When the value of n is fixed, expression (19) allows
us to estimate the surface mass density of the lens
as a function of λ, in the given interval.

After making the substitutions required by our
proposed model, the deflection angle described by
equation (12) takes the form:

α(n, λ) =
n− 1

λ
+

√
1 +

1

λ2
−

√
1 +

n2

λ2
, (20)

for which we know that 1 ≤ λ ≤ 7.25 and n > 1.
At the same time, the lensing potential expressed

in equation (13) takes the new form:

ψ(n, λ) =
a

ξ0

[
(n− 1) + ln

2a

ξ0
− n ln

2na

ξ0

+
√
1 + λ2 −

√
n2 + λ2

− ln
a(1 +

√
1 + λ2)

ξ0

+n ln
a(n+

√
n2 + λ2)

ξ0

]
, (21)

which depends on the scale factor defined in equation
(18) and on the following conditions: 1 ≤ λ ≤ 7.25
and n > 1.

3.2. Time Delay Model

By using the values obtained from the
B0218 + 357 lens system, the time delay stated in
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TABLE 2

TIME DELAY VALUES IN THE LENS SYSTEM
B0218 + 357

n 2 2.1 2.2

∆t (days) 9.67 10.3 10.9

equation (14) is reduced to

∆t = (5·68 days)
n2

(n2 − 1)2

×
[
h(n)

2
− 1·32(n

2 − 1)g(n)

n2

]
. (22)

The values h and g, and equations (15) and (16),
depend only on the adimensional parameter n. This
allows us to establish values for the time delay. We
took advantage of the fact that the time delay be-
tween the two images is observationally measured,
as shown in Table 1 (10.5 days), and introduced dif-
ferent values for n in equation (22), until we reached
the observed value. Table 2 shows the time delay
given by equation (22) for some values of n.

When we compare the observational time delay
∆t = 10.5 ± 0.2days (Table 1) with equation (22),
we see that the adimensional parameter has a range
of certainty of 2 ≤ n ≤ 2.2 for the lens system
B0218 + 357.

Establishing the value of the parameter n allowed
us to estimate the geometric parameters a and b of
the elliptical lens and then to find the numerical val-
ues for the other basic elements of the lensing system,
such as the surface density of the lens, the deflection
angle, the scale factor and the lensing potential, as
indicated in the following section.

3.3. Estimation of the Deflection Angle, Lensing

Potential and Lens Equation

Given that for the B0218 + 357 lens system, the
approximate radius of the nucleus is a = 264 pc, the
adimensional parameter is n = 2.1, the cross sec-
tion is DLDLS/DS and the observer-lens distance is
DL, we can estimate the deviation angle, deflection
potential and the lens equation in this model:

1. Using as our premise equation (19), and con-
sidering that the value of the adimensional parame-
ter is n = 2.1, and that the surface density decreases
as the impact parameter increases, within the range
1 ≤ λ ≤ 7.25, then the estimated surface mass den-
sity of the lens for the proposed system is in the
range of 0.32kg/m2 ≤ Σ ≤ 32kg/m2.

2. In accordance with equation (20), and con-
sidering that the parameter λ is in the range
1 ≤ λ ≤ 7.25, we deduce that the deflection angle
ranges between 120mas and 220mas.

3. In accordance with equation (18) and with
the values of the adimensional parameter n shown
in § 3.1, we can establish that the approximate
value of the scale factor is ξ0 = 260 pc. Further-
more, since the values of the parameter λ range be-
tween 1 ≤ λ ≤ 7.25, the values of the lensing poten-
tial, according to equation (21), must range between
150mas and 930mas.

4. CONCLUSIONS

This work is based on a volumetric mass distri-
bution that describes a fast relaxation scenario, sim-
ilar to a model of an isothermal sphere, according to
Kenyon (1990), where the mass of the lens is consid-
ered to be spherically symmetric. The model of an el-
liptical lensing galaxy includes a central core with ra-
dius a, a mass density in the central core ρ0 and also
a free shape parameter b (b > a). This mass distri-
bution allowed us to find new analytical expressions
of the lens elements. These new elements are equa-
tions for the lens surface density, the deviation angle,
the deflection potential and the time delay. These
expressions depend on the impact parameter of the
images and on the geometric lens elements a and b,
related by the adimensional parameter n = b/a > 1.

The analytical expressions that describe the sur-
face mass density of the lens, the deflection angle,
lensing potential and time delay of our proposed
model can be used to analyze other galaxy lens sys-
tems. Our equations are quite general and applying
them to study a specific lens system requires only the
observational measurements indicated in Table 1.

The results of § 2 can be applied to any galaxy
lens system whose mass density distribution fits the
elliptical model we describe in this paper. The an-
alytical expressions found in this work are a good
point of departure for further research. In this work
the proposed gravitational lens model is applied to
the lens system B0218 + 357, using the observational
values shown in Table 1. The values of the cosmo-
logical parameters used for our model are the most
widely accepted in the literature, e.g. Bartelmann
et al. (1997), Boughn et al. (2001), Foster et al.
(1994), Kessler et al. (2009), Schneider et al. (1992),
for the the Hubble constant, vacuum density, matter
density and softness parameter. These cosmologi-
cal parameters are reflected in the angular diameter
distances between observer and lens, observer and -
source and lens and source. Based on these values,
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we find the approximate radius of the nucleus of the
lensing galaxy, the angular diameter distances, the
scale factor defined by equation (18) and the adi-
mensional parameter n.

The adimensional parameter n is adjusted to the
time delay defined by equation (22), and compared
to the observed time delay ∆tobs = 10.5 days, shown
in Table 1. To do this, it was necessary to write the
impact parameter R, in terms of the radius of the
nucleus λ = R/a ≥ 1.

Because the impact parameter is expressed in
terms of the radius of the nucleus, we were able, once
the cosmological parameters were set, to determine
the theoretical time delay given by equation (22),
which depends only on the adimensional parameter
n. Thus, when we compared the theoretical time de-
lay given by equation (22) with the observationally
measured time delay in Table 1, we found that the
range of values of the adimensional parameter n is
2 ≤ n ≤ 2.2.

Finally, as evidenced in § 3.3, using the value
n = 2.1 for the adimensional parameter and the in-
terval 1 ≤ λ ≤ 7.25 for the impact parameter allowed
us to estimate numerical values for the surface den-
sity of the lens, the deflection angle, the scale factor
and the lensing potential for our proposed model.
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