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The aim of this paper is to introduce the generalized Apostol-type polyno-
mial matrix W [m−1,α](x; c, a;λ;µ; ν) and the generalized Apos-tol-type matrix
W [m−1,α](c, a;λ;µ; ν). Using some properties of the generalized Apostol-type po-
lynomials and numbers, we deduce a product formula for W [m−1,α](x; c, a;λ;µ; ν)
and provide some factorizations of the Apostol-type polynomial matrix
W [m−1](x; c, a;λ;µ; ν), involving the generalized Pascal matrix, Fibonacci and
Lucas matrices, respectively.
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1. INTRODUCTION

In many settings (see e.g. [2–4,6,8,10,11,19,20,24–29]), a number of inte-
resting and useful identities involving binomial (or q-binomial) coefficients can
be obtained from a matrix representation of a particular counting sequence.
Such a matrix representation provides a powerful computational tool for deri-
ving identities and an explicit formula related to the sequence. Also, it is pos-
sible to obtain from a matrix representation of a particular counting sequence,
an identity and an explicit formula for the general term of the sequence.

Particularly interesting are those contexts in which such a matrix repre-
sentation is related to special classes of polynomials, namely, Bernoulli poly-
nomials, Euler polynomials, Bell polynomials, Jacobi polynomials, Laguerre
polynomials their generalizations and q-analogues, and so on.

Having in mind these facts and motivated by [19, 28], the main purpose
of the present paper is to introduce the generalized Apostol-type polynomial
matrix, provide some of its algebraic properties, as well as, determine explicit
expressions for it, which connect it with Pascal, Fibonacci and Lucas matrices,
respectively.
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So, we begin our study with the definition of a unified version of the
generalized Apostol-type polynomials. For m ∈ N, α, λ, µ, ν ∈ C and a, c
positive real numbers, the generalized Apostol-type polynomials in the variable
x, parameters c, a, λ, µ, ν, order α and level m, are defined by means of the
following generating function [7].

(1)
(
E

(c,a;λ;µ;ν)
1,m+1 (z)

)α
cxz =

∞∑
n=0

Q[m−1,α]
n (x; c, a;λ;µ; ν)

zn

n!
,

where |z| < 2π when λ = 1, |z| < π when λ = −1,
(∣∣z ln

(
c
a

)∣∣ < | log(−λ)|
)

when λ ∈ C \ {−1, 1}, 1α := 1, and E
(c,a;λ;µ;ν)
1,m+1 (z) is the Mittag-Leffler type

function given by

E
(c,a;λ;µ;ν)
1,m+1 (z) :=

(2µzν)m

λcz +
m−1∑
l=0

(z ln a)l

l!

, m ∈ N, a, c ∈ R+, λ, µ, ν ∈ C.

This class of polynomials has been introduced recently in [7] and it pro-
vides a unified presentation of the generalized Apostol-type polynomials and
the generalized Apostol-Bernoulli polynomials, Apostol-Euler polynomials and
Apostol-Genocchi polynomials in the variable x, parameters λ, a, c, order α and
level m, (cf. [13, 14,17]).

The numbers given by

Q[m−1,α]
n (c, a;λ;µ; ν) := Q[m−1,α]

n (0; c, a;λ;µ; ν),

denote the corresponding unified presentation of the generalized Apostol-type
numbers of parameters λ ∈ C, a, c ∈ R+, order α ∈ C and level m ∈ N.

From (1), it is easily observed that the following addition theorem of the
argument is satisfied.

(2) Q[m−1,α+β]
n (x+ y; c, a;λ;µ; ν)

=
n∑
k=0

(
n

k

)
Q

[m−1,α]
k (x; c, a;λ;µ; ν)Q

[m−1,β]
n−k (y; c, a;λ;µ; ν).

Since Q
[m−1,0]
n (x; c, a;λ;µ; ν) = (x ln(c))n, upon setting β = 0 in addition

theorem of the argument (2) and interchanging x and y, we obtain

Q[m−1,α]
n (x+ y; c, a;λ;µ; ν) =

n∑
k=0

(
n

k

)
Q

[m−1,α]
k (y; c, a;λ;µ; ν)(x ln c)n−k.(3)

The outline of the paper is as follows. Section 2 contains the basic back-
ground about the generalized Apostol-type polynomials in the variable x, para-
meters c, a, λ, µ, ν, order α and level m, and some other auxiliary results which
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will be used throughout the paper. In Section 3, we introduce the generalized
Apostol-type polynomial matrix, derive a product formula for it and give some
factorizations for such a matrix, which involve summation matrices and the ge-
neralized Pascal matrix of first kind in base c, respectively. Finally, Section 4
shows several factorizations of the generalized Apostol-type matrix in terms of
the Fibonacci and Lucas matrices, respectively (cf. Theorems 8 and 9).

2. BACKGROUND AND PREVIOUS RESULTS

Throughout this paper, we denote by N, N0, R, R+, and C the sets of
natural, nonnegative integer, real, positive real and complex numbers, respecti-
vely. All matrices are in Mn+1(K), the set of all (n+ 1)× (n+ 1) matrices over
the field K, with K = R or C. Also, for i, j any nonnegative integers we adopt
the following convention (

i

j

)
= 0, whenever j > i.

Definition 1. Let x be any nonzero real number. For c ∈ R+, the genera-
lized Pascal matrix of first kind in base c Pc[x], is an (n+ 1)× (n+ 1) matrix
whose entries are given by

pi,j,c(x) :=


(
i
j

)
(x ln c)i−j , i ≥ j,

0, otherwise.

It is clear that when c = e, the matrix Pc[x] coincides with the generalized
Pascal matrix of first kind P [x]. Furthermore, if we adopt the convention
00 = 1, then Pc[0] = In+1, with In+1 = diag(1, 1, . . . , 1).

Following [2], a useful alternative expression for Pc[x] can be deduced:
suppose there is a matrix Lc such that Pc[x] = exLc , then

d

dx
Pc[x] =

d

dx
exLc = Lce

xLc = LcPc[x],

so,
d

dx
Pc[x]

∣∣∣∣
x=0

= LcPc[0] = LcIn+1 = Lc.

Thus, there is at most one matrix Lc such that Pc[x] = exLc . Indeed, such a
matrix Lc is given by

(Lc)i,j =

{
j ln c, i = j + 1,
0, otherwise.
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Note that for every k ∈ N, the entries of the matrix Lkc := (Lc)
k are given

by the formula (
Lkc

)
i,j

=

{ i!
j!(ln c)

i−j , i = j + k,

0, otherwise.

Furthermore, for k ≥ n+ 1 we have
(
Lkc
)
i,j

= 0, which implies that the infinite

series for exLc reduces to the finite sum

exLc = I + x ln(c)Lc +
(x ln(c))2

2!
L2
c + · · ·+ (x ln c)n

n!
Lnc .

Clearly exLc is a lower triangular matrix with diagonal entries equal to 1. If we
assume i > j and let k = i − j, then the only matrix in the sum above which

has a nonzero (i, j)−th entry is (x ln(c))k

k! Lc, so

(
exLc

)
i,j

=
(x ln c)k

k!

(
Lkc

)
i,j

=
i!

j!(i− j)!
(x ln c)i−j =

(
i

j

)
(x ln c)i−j = pi,j,c(x).

An immediate consequence of the remarks above is the following propo-
sition.

Proposition 1 (Addition theorem of the argument). For x, y ∈ R we
have

Pc[x+ y] = Pc[x]Pc[y].

Taking into account that the affine transformation x 7→ x ln c implies the
identity Pc[x] = P [x ln c], where P [y] denotes the generalized Pascal matrix
of first kind, the following algebraic and differential properties of Pc[x] can be
derived.

Proposition 2. For c ∈ R+, let Pc[x] be the generalized Pascal matrix
of first kind in base c and order n+ 1. Then the following statements hold.

(a) Pc[x] is an invertible matrix and its inverse is given by

P−1c [x] := (Pc[x])−1 = Pc[−x].

(b) Differential relation (Appell type polynomial entries). Pc[x] satisfies the
following differential equation

DxPc[x] = LcPc[x] = Pc[x]Lc,

where DxPc[x] is the matrix resulting from taking the derivative with
respect to x of each entry of Pc[x] and the entries of the (n+ 1)× (n+ 1)
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matrix L are given by

li,j,c =


p′i,j,c(0), i ≥ j,

0, otherwise,

=


(j + 1) ln c, i = j + 1,

0, otherwise.

(e) The matrix Pc[x] can be factorized as follows.

(4) Pc[x] = Gn,c[x]Gn−1,c[x] · · ·G1,c[x],

where Gk,c[x] is the (n+ 1)× (n+ 1) summation matrix given by

Gk,c[x] =


[
In−k 0

0 Sk,c[x]

]
, k = 1, . . . , n− 1,

Sn,c[x], k = n,

being Sk,c[x] the (k + 1) × (k + 1) matrix whose entries Sk,c(x; i, j) are
given by

Sk,c(x; i, j, c) =


(x ln c)i−j , i ≥ j,

0, j > i,
(0 ≤ i, j ≤ k).

Another necessary structured matrices in what follows, are the Fibonacci
and Lucas matrices. Below, we recall the definitions of each one of them.

Definition 2. Let {Fn}n≥1 be the Fibonacci sequence, i.e., Fn = Fn−1 +
Fn−2 for n ≥ 2 with initial conditions F0 = 0 and F1 = 1. The Fibonacci
matrix F is an (n+ 1)× (n+ 1) matrix whose entries are given by [11]:

fi,j =


Fi−j+1, i− j + 1 ≥ 0,

0, i− j + 1 < 0.

Let F−1 be the inverse of F and denote by f̃i,j the entries of F−1. In [11]
the authors obtained the following explicit expression for F−1.

f̃i,j =


1, i = j,

−1, i = j + 1, j + 2,

0, otherwise.
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Definition 3. Let {Ln}n≥1 be the Lucas sequence, i.e., Ln+2 = Ln+1 +Ln
for n ≥ 1 with initial conditions L1 = 1 and L2 = 3. The Lucas matrix L is
an (n+ 1)× (n+ 1) matrix whose entries are given by [29]:

li,j =


Li−j+1, i− j ≥ 0,

0, otherwise.

Let L −1 be the inverse of L and denote by l̃i,j the entries of L −1.
In [29, Theorem 2.2] the authors obtained the following explicit expression for
L −1.

l̃i,j =



1, i = j,

−3, i = j + 1,

5(−1)i−j2i−j−2, i ≥ j + 2,

0, otherwise.

For x any nonzero real number, using [29, Theorem 3.1] we can deduce
the following relation between the matrices Pc[x] and L .

(5) Pc[x] = L Gc[x] = Hc[x]L ,

where the entries of the (n+ 1)× (n+ 1) matrices Gc[x] and Hc[x] are given by

gi,j,c(x) = (x ln c)−j−1
[
(x ln c)i+1

(
i

j

)
− 3(x ln c)i

(
i− 1

j

)
+ 5(−1)i+12i−1mi−1,j+1

(
x ln c

2

)]
,

hi,j,c(x) = (x ln c)−j−1
[
(x ln c)i+1

(
i

j

)
− 3(x ln c)i

(
i

j + 1

)
+ (−1)j+1 5(x ln c)i+j+2

2j+3
ni+1,j+3

(
2

x ln c

)]
,

respectively, with

mi,j(x) :=


∑i

k=j(−1)k
(
k
j

)
(x ln c)k, i ≥ j,

0, otherwise,

ni,j(x) :=


∑i

k=j(−1)k
(
i
k

)
(x ln c)k, i ≥ j,

0, otherwise.
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3. THE GENERALIZED APOSTOL-TYPE POLYNOMIAL MATRIX

Definition 4. For m ∈ N, α, λ, µ, ν ∈ C and a, c positive real numbers, the
generalized (n+1)×(n+1) Apostol-type polynomial matrix W [m−1,α](x; c, a;λ;
µ; ν) is defined by

W
[m−1,α]
i,j (x; c, a;λ;µ; ν) =


(
i
j

)
Q

[m−1,α]
i−j (x; c, a;λ;µ; ν), i ≥ j,

0, otherwise.

While, the matrices

W [m−1](x; c, a;λ;µ; ν) := W [m−1,1](x; c, a;λ;µ; ν),

W [m−1](c, a;λ;µ; ν) := W [m−1](0; c, a;λ;µ; ν)

are called the Apostol-type polynomial matrix and the Apostol-type matrix,
respectively.

Since Q
[m−1,0]
n (x; c, a;λ;µ; ν) = (x ln(c))n, we have

W [m−1,0](x; c, a;λ;µ; ν) = Pc[x].

It is clear that (3) yields the following matrix identity:

W [m−1,α](x+ y; c, a;λ;µ; ν) = W [m−1,α](y; c, a;λ;µ; ν)Pc[x].

The next result is an immediate consequence of Definition 4 and the
addition formula (2).

Theorem 3. The generalized Apostol-type polynomial matrix W [m−1,α](x;
c, a;λ;µ; ν) satisfies the following product formula.

(6) W [m−1,α+β](x+ y; c, a;λ;µ; ν)

= W [m−1,α](x; c, a;λ;µ; ν) W [m−1,β](y; c, a;λ;µ; ν)

= W [m−1,β](x; c, a;λ;µ; ν) W [m−1,α](y; c, a;λ;µ; ν)

= W [m−1,α](y; c, a;λ;µ; ν) W [m−1,β](x; c, a;λ;µ; ν).

Proof. We proceed as in the proof of [19, Theorem 3.1], making the cor-

responding modifications. Let A
[m−1,α,β]
i,j,c (a;λ;µ; ν)(x, y) be the (i, j)-th entry

of the matrix product W [m−1,α](x; c, a;λ;µ; ν) W [m−1,β](y; c, a;λ;µ; ν), then by
the addition formula (2) we have

A
[m−1,α,β]
i,j,c (a;λ;µ; ν)(x, y)

=

n∑
k=0

(
i

k

)
Q

[m−1,α]
i−k (x; c, a;λ;µ; ν)

(
k

j

)
Q

[m−1,β]
k−j (y; c, a;λ;µ; ν)
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=
i∑

k=j

(
i

k

)
Q

[m−1,α]
i−k (x; c, a;λ;µ; ν)

(
k

j

)
Q

[m−1,β]
k−j (y; c, a;λ;µ; ν)

=
i∑

k=j

(
i

j

)(
i− j
i− k

)
Q

[m−1,α]
i−k (x; c, a;λ;µ; ν)Q

[m−1,β]
k−j (y; c, a;λ;µ; ν)

=

(
i

j

) i−j∑
k=0

(
i− j
k

)
Q

[m−1,α]
i−j−k (x; c, a;λ;µ; ν)Q

[m−1,β]
k (y; c, a;λ;µ; ν)

=

(
i

j

)
Q

[m−1,α+β]
i−j (x+ y; c, a;λ;µ; ν),

which implies the first equality of the theorem. The second and third equalities
can be derived in a similar way. �

The next result establishes the relation between the generalized Apostol-
type polynomial matrix and the generalized Pascal matrix of first kind in base c.

Corollary 4. The generalized Apostol-type matrix W [m−1,α](y; c, a;λ;
µ; ν) satisfies the following relation.

W [m−1,α](x+ y; c, a;λ;µ; ν) = W [m−1,α](x; c, a;λ;µ; ν)Pc[y]

= Pc[x]W [m−1,α](y; c, a;λ;µ; ν)

= W [m−1,α](y; c, a;λ;µ; ν)Pc[x].

In particular,

W [m−1](x+ y; c, a;λ;µ; ν) = Pc[x]W [m−1](y; c, a;λ;µ; ν)

= Pc[y]W [m−1](x; c, a;λ;µ; ν).

Proof. The substitution β = 0 into (6) yields

W [m−1,α](x+y; c, a;λ;µ; ν)=W [m−1,α](x; c, a;λ;µ; ν)W [m−1,0](y; c, a;λ;µ; ν).

Since W [m−1,0](y; c, a;λ;µ; ν) = Pc[y], we obtain

(7) W [m−1,α](x+ y; c, a;λ;µ; ν) = W [m−1,α](x; c, a;λ;µ; ν)Pc[y].

A similar argument allows to show that

W [m−1,α](x+ y; c, a;λ;µ; ν) = Pc[x]W [m−1,α](y; c, a;λ;µ; ν)

= W [m−1,α](y; c, a;λ;µ; ν)Pc[x].

Finally, the substitution α = 1 into (7) and its combination with the
previous equations complete the proof. �
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Using the relation (4) and Corollary 4 we obtain the following factoriza-
tion for W [m−1,α](x+ y; c, a;λ;µ; ν) in terms of summation matrices.

W [m−1,α](x+ y; c, a;λ;µ; ν)

= W [m−1,α](x; c, a;λ;µ; ν)Gn,c[y]Gn−1,c[y] · · ·G1,c[y].

Also, for any x nonzero real number, using (5) and Corollary 4 we obtain
the following factorizations for W [m−1,α](x+y; c, a;λ;µ; ν) in terms of the Lucas
matrix.

W [m−1,α](x+ y; c, a;λ;µ; ν) = W [m−1,α](x; c, a;λ;µ; ν)L Gc[y]

= W [m−1,α](x; c, a;λ;µ; ν)Hc[y]L .

Under the appropriate choice on the parameters, level and order, it is
possible to provide some illustrative examples of the generalized Apostol-type
polynomial matrices:

Example 5. For m ∈ N, c = a = e = exp(1), α = ν = 1, λ = −1 and

µ = 0, let us consider the polynomials Q
[m−1,1]
k (x; e, e;−1; 0; 1), k = 0, 1, 2, 3.

From the relation (cf. [7, Eq. (15)]):

Q[m−1,1]
n (x; e, e;−1; 0; 1) = −B[m−1]

n (x), n ∈ N0,

whereB
[m−1]
n (x) is the n-th generalized Bernoulli polynomial of levelm (see [20]

and the references therein).

Hence, for n = 3 we have

W [m−1,1](x; e, e;−1; 0; 1)

=


−m! 0 0 0

−m!
(
x− 1

m+1

)
−m! 0 0

−B[m−1]
2 (x) −2m!

(
x− 1

m+1

)
−m! 0

−B[m−1]
3 (x) −3B

[m−1]
2 (x) −3m!

(
x− 1

m+1

)
−m!

 ,
with

B
[m−1]
2 (x) = m!

(
x2 − 2

m+ 1
x+

2

(m+ 1)2(m+ 2)

)
,

B
[m−1]
3 (x)

= m!

(
x3 − 3

m+ 1
x2 +

6

(m+ 1)2(m+ 2)
x+

6(m− 1)

(m+ 1)2(m+ 2)(m+ 3)

)
.



258 Yamilet Quintana, William Ramı́rez and Alejandro Urieles 10

Example 6. For m = λ = µ = 1, c = a = e = exp(1) and ν = 0, let us

consider the polynomials Q
[1,α]
k (x; e, e; 1; 1; 0) = E

(α)
k (x), where E

(α)
k (x) is the

k-th generalized Euler polynomial, k = 0, 1, 2, 3. Then, for n = 3 we have

W [m−1,1](x; e, e; 1; 1; 0) = E (α)(x),

where E (α)(x) is the generalized Euler matrix given by (cf. [19]):

E (α)(x)

=


1 0 0 0

x− α
2 1 0 0

x2 − αx+ α(α−1)
4 2x− α 1 0

x3 − 3α
2 x

2 + 3α(α−1)
4 x− 3α2(α−1)

8 3
(
x2 − αx+ α(α−1)

4

)
3
(
x− α

2

)
1

 .
Example 7. For n = 3, m = c = µ = 2, a = 3, α = 1

2 , ν = 5 and any
λ ∈ C \ {−1, 1}, we have (see [7, Example 4]):

Q
[1, 12 ]
j (x; 2, 3;λ; 2; 5) = 0, j = 0, 1,

Q
[1, 12 ]
2 (x; 2, 3;λ; 2; 5) =

32√
1 + λ

,

Q
[1, 12 ]
3 (x; 2, 3;λ; 2; 5) =

48

(1 + λ)
3
2

[(2 ln 2)(λ+ 1)x− (ln 2)λ− ln 3] .

Therefore,

W [1, 12 ](x; 2, 3;λ; 2; 5) =


0 0 0 0
0 0 0 0
32√
1+λ

0 0 0

a3,0(x, λ) 96√
1+λ

0 0

 ,
where a3,0(x, λ) = Q

[1, 12 ]
3 (x; 2, 3;λ; 2; 5).

Remark 1. Note that the examples above say that the generalized Apostol-
type polynomial matrices are not invertible matrices in general. Hence, exten-
sions of classical factorization theorems for this family of polynomial matrices
do not make sense in general.

However, Remark 1 suggests the following definition.

Definition 5. Let
{

Q
[m−1,α]
n (x; c, a;λ;µ; ν)

}
n≥0

be a sequence of genera-

lized Apostol-type polynomials in the variable x, parameters c, a, λ, µ, ν, order

α and level m. We say that
{

Q
[m−1,α]
n (x; c, a;λ;µ; ν)

}
n≥0

admits an inversion
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if there exists a sequence {an(c, a;λ;µ; ν)}n≥0 of nonzero complex (or real)
numbers, such that

an(c, a;λ;µ; ν)(x ln(c))n =

n∑
k=0

(
n

k

)
Q

[m−1,α]
n−k (x; c, a;λ;µ; ν), n ≥ 0.

When the polynomial sequence
{

Q
[m−1,α]
n (x; c, a;λ;µ; ν)

}
n≥0

admits an inver-

sion, we call to its corresponding generalized Apostol-type polynomial matrix,
admissible generalized Apostol-type matrix.

Remark 2. The following facts are straightforward consequences of Defi-
nition 5:

(a) It is clear that the definition above splits the class of the sequences of ge-
neralized Apostol-type polynomials into two disjoint subclasses, namely,
the polynomial sequences which admit an inversion and the polynomial
sequences which do not admit an inversion.

(b) If a sequence of generalized Apostol-type polynomials admits an inver-
sion, then it is a basis of the space of polynomials and its corresponding
generalized Apostol-type polynomial matrix is a nonsingular matrix.

(c) Extensions of the classical factorization theorems will take place in the
framework of the admissible generalized Apostol-type polynomial matri-
ces.

(d) Examples 5 and 6 show admissible generalized Apostol-type matrices,
while Example 7 shows a non-admissible generalized Apostol-type ma-
trix.

(e) As a consequence of Corollary 4, if W [m−1,α](x; c, a;λ;µ; ν) is an admis-
sible generalized Apostol-type matrix, then its inverse matrix can be
factorized as follows.(

W [m−1,α](x; c, a;λ;µ; ν)
)−1

= Pc[−x]
(
W [m−1,α](c, a;λ;µ; ν)

)−1
.

So, factorizations for the matrix
(
W [m−1,α](x+ y; c, a;λ;µ; ν)

)−1
in terms

of the inverses of summation matrices or in terms of the inverse of the
Lucas matrix also will take place, respectively.

4. FACTORIZATIONS OF THE GENERALIZED APOSTOL-TYPE
MATRICES VIA FIBONACCI AND LUCAS MATRICES

For m ∈ N, a, c positive real numbers, λ, µ, ν ∈ C, α a real or complex
number and 0 ≤ i, j ≤ n, let M [m−1,α](x; c, a;λ;µ; ν) be the (n+ 1)× (n+ 1)
matrix whose entries are given by (cf. [19]):
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m̃
[m−1,α]
i,j (x; c, a;λ;µ; ν)

=

(
i

j

)
Q

[m−1,α]
i−j (x; c, a;λ;µ; ν)−

(
i− 1

j

)
Q

[m−1,α]
i−j−1 (x; c, a;λ;µ; ν)

−
(
i− 2

j

)
Q

[m−1,α]
i−j−2 (x; c, a;λ;µ; ν).

We denote M [m−1](x)=M [m−1,1](x; e, e; 1; 0; 1) and M [m−1]=M [m−1](0).

Similarly, let N [m−1,α](x; c, a;λ;µ; ν) be the (n + 1) × (n + 1) matrix
whose entries are given by (cf. [19]):

ñ
[m−1,α]
i,j (x; c, a;λ;µ; ν)

=

(
i

j

)
Q

[m−1,α]
i−j (x; c, a;λ;µ; ν)−

(
i

j + 1

)
Q

[m−1,α]
i−j−1 (x; c, a;λ;µ; ν)

−
(

i

j + 2

)
Q

[m−1,α]
i−j−2 (x; c, a;λ;µ; ν).

We denote N [m−1](x)=N [m−1,1](x; e, e; 1; 0; 1) and N [m−1]=N [m−1](0).

From the definitions of M [m−1,α](x; c, a;λ;µ; ν) and N [m−1,α](x; c, a;λ;
µ; ν), we see that

m̃
[m−1,α]
0,0 (x; c, a;λ;µ; ν) = m̃

[m−1,α]
1,1 (x; c, a;λ;µ; ν) = ñ

[m−1,α]
0,0 (x; c, a;λ;µ; ν)

= ñ
[m−1,α]
1,1 (x; c, a;λ;µ; ν) = Q

[m−1,α]
0 (c, a;λ;µ; ν),

m̃
[m−1,α]
0,j (x; c, a;λ;µ; ν) = ñ

[m−1,α]
0,j (x; c, a;λ;µ; ν) = 0, j ≥ 1,

m̃
[m−1,α]
1,0 (x; c, a;λ;µ; ν) = ñ

[m−1,α]
1,0 (x; c, a;λ;µ; ν)

= Q
[m−1,α]
1 (x; c, a;λ;µ; ν)−Q

[m−1,α]
0 (c, a;λ;µ; ν),

m̃
[m−1,α]
1,j (x; c, a;λ;µ; ν) = ñ

[m−1,α]
1,j (x; c, a;λ;µ; ν) = 0, j ≥ 2,

m̃
[m−1,α]
i,0 (x; c, a;λ;µ; ν) = ñ

[m−1,α]
i,0 (x; c, a;λ;µ; ν)

= Q
[m−1,α]
i (x; c, a;λ;µ; ν)−Q

[m−1,α]
i−1 (x; c, a;λ;µ; ν)

−Q
[m−1,α]
i−2 (x; c, a;λ;µ; ν), i ≥ 2.

For m ∈ N, a, c positive real numbers, λ, µ, ν ∈ C, α a real or complex

number and 0 ≤ i, j ≤ n, let L
[m−1,α]
1 (x; c, a;λ;µ; ν) be the (n + 1) × (n + 1)

matrix whose entries are given by

l̂
[m−1,α]
i,j,1 (x; c, a;λ;µ; ν)

=

(
i

j

)
Q

[m−1,α]
i−j (x; c, a;λ;µ; ν)− 3

(
i− j
j

)
Q

[m−1,α]
i−j−1 (x; c, a;λ;µ; ν)
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+ 5
i−2∑
k=j

(−1)i−k2i−k−2
(
k

j

)
Q

[m−1,α]
k−j (x; c, a;λ;µ; ν).

We denote L
[m−1]
1 (x) = L

[m−1,1]
1 (x; e, e; 1; 0; 1) and L

[m−1]
1 = L

[m−1]
1 (0).

Similarly, let L
[m−1,α]
2 (x; c, a;λ;µ; ν) be the (n+1)×(n+1) matrix whose

entries are given by

l̂
[m−1,α]
i,j,2 (x; c, a;λ;µ; ν)

=

(
i

j

)
Q

[m−1,α]
i−j (x; c, a;λ;µ; ν)− 3

(
i

j + 1

)
Q

[m−1,α]
i−j−1 (x; c, a;λ;µ; ν)

+ 5
i∑

k=j+1

(−1)k−j2k−j−2
(
i

k

)
Q

[m−1,α]
i−k (x; c, a;λ;µ; ν).

We denote L
[m−1]
2 (x) = L

[m−1,1]
2 (x; e, e; 1; 0; 1) and L

[m−1]
2 = L

[m−1]
2 (0).

From the definitions of L
[m−1,α]
1 (x; c, a;λ;µ; ν) and L

[m−1,α]
2 (x; c, a;λ;

µ; ν), we see that

l̂
[m−1,α]
i,i,1 (x; c, a;λ;µ; ν) = l̂

[m−1,α]
i,i,2 (x; c, a;λ;µ; ν)

= Q
[m−1,α]
0 (c, a;λ;µ; ν), i ≥ 0,

l̂
[m−1,α]
0,j,1 (x; c, a;λ;µ; ν) = l̂

[m−1,α]
0,j,2 (x; c, a;λ;µ; ν), j ≥ 1,

l̂
[m−1,α]
1,0,1 (x; c, a;λ;µ; ν) = l̂

[m−1,α]
1,0,2 (x; c, a;λ;µ; ν)

= Q
[m−1,α]
1 (x; c, a;λ;µ; ν)− 3Q

[m−1,α]
0 (c, a;λ;µ; ν),

l̂
[m−1,α]
1,j,1 (x; c, a;λ;µ; ν) = l̂

[m−1,α]
1,j,2 (x; c, a;λ;µ; ν) = 0, j ≥ 2.

The following results show some factorizations of W [m−1,α](x; c, a;λ;µ; ν)
in terms of Fibonacci and Lucas matrices, respectively.

Theorem 8. The generalized Apostol-type matrix W [m−1,α](x; c, a;λ;µ; ν)
can be factorized in terms of the Fibonacci matrix F as follows.

(8) W [m−1,α](x; c, a;λ;µ; ν) = FM [m−1,α](x; c, a;λ;µ; ν),

or,

(9) W [m−1,α](x; c, a;λ;µ; ν) = N [m−1,α](x; c, a;λ;µ; ν)F .

In particular,

(10) FM [m−1](x) = W [m−1,α](x; e, e; 1; 0; 1) = N [m−1](x)F .
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Proof. Since the relation (8) is equivalent to

F−1W [m−1,α](x; c, a;λ;µ; ν) = M [m−1,α](x; c, a;λ;µ; ν),

it is possible to follow the proofs given in [19] or [28, Theorem 4.1], making
the corresponding modifications, for obtaining (8). The relation (9) can be
obtained using a similar procedure. The relation (10) is a straightforward
consequence of (8) and (9). �

Also, the relations (8) and (9) allow us to deduce the following identity:

M [m−1,α](x; c, a;λ;µ; ν) = F−1N [m−1,α](x; c, a;λ;µ; ν) F .

An analogous reasoning as used in the proof of Theorem 8 allows us to
prove the results below.

Theorem 9. The generalized Apostol-type matrix W [m−1,α](x; c, a;λ;µ; ν)
can be factorized in terms of the Lucas matrix L as follows.

(11) W [m−1,α](x; c, a;λ;µ; ν) = L L
[m−1,α]
1 (x; c, a;λ;µ; ν),

or,

(12) W [m−1,α](x; c, a;λ;µ; ν) = L
[m−1,α]
2 (x; c, a;λ;µ; ν)L .

In particular,

L L
[m−1]
1 (x) = W [m−1](x; e, e; 1; 0; 1) = L

[m−1]
2 (x)L .

Also, the relations (11) and (12) allow us to deduce the following identity:

L
[m−1]
1 (x) = L −1L

[m−1]
2 (x) L .

Remark 3. It is worthwhile to mention that

(a) If we consider a ∈ C, b ∈ C \ {0} and s = 0, 1, then Theorems 8 and
9, as well as, their corollaries have corresponding analogous forms for
generalized Fibonacci matrices of type s, F (a,b,s), and for generalized

Fibonacci matrices U (a,b,0) with second order recurrent sequence U
(a,b)
n

subordinated to certain constraints. The reader may consult [24] in order
to complete the details of this assertion.

(b) In the present article, all matrix identities have been expressed using finite
matrices. Since such matrix identities involve lower triangular matrices,
they have an analogue for infinite matrices.

Finally, we are only at the beginning of this subject, some possible paths
to continue are to study further q-analogues of these matrices, (cf. [1, 8, 9,
11, 12, 19, 21–23]). Because of the close affinity to combinatorial identities
and combinatorics, the q-analogues of the generalized Apostol-type polynomial
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matrices could have many applications (depending on the notion of q-analogy
chosen).
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