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1. Introduction

Generalized open sets play a very important role in General Topology and
they are now the research topics of many topologists worldwide. Indeed
a significant theme in General Topology and Real analysis concerns the
various modified forms of continuity, separation axioms etc. Utilizing gen-
eralized open sets. Kasahara [1] defined the concept of an operation on
topological spaces. Ogata and Maki [4] introduced and studied the notion
of 7y~ which is the collection of all 7V ~4'-open sets in a topological space
(X, 7). Przemski in [5], analyze some forms of decomposition of continuous
and a-continuous using D(a, s)-set, D(a,b)-set, D(p,sp)-set, D(p,b)-set
and D(b, sp)-set In this paper, we introduce some new types of sets via
bioperation and obtain some theorems related with decomposition of con-
tinuity.

2. Preiliminaries

The closure and the interior of a subset A of (X, 7) are denoted by (A) and
(A), respectively.

Definition 2.1. [I] Let (X, 7) be a topological space. An operation -y on
the topology T is function from T on to power set P(X) of X such that
V c V7 foreachV € 7, where V7 denotes the value of T at V. It is denoted
by v: 17— P(X).

Definition 2.2. A subset A of a topological space (X, T) is said to be
vV +'-open set [4] if for each x € A there exists an open neighbourhood U
of x such that UY UUY C A. The complement of v\ 4'-open set is called
vV 4'-closed. Ty~ denotes set of all vV ~'-open sets in (X, ).

Definition 2.3. [4] For a subset A of (X, T), Tyy~-(A) denotes the inter-
section of all 7y V ~/'-closed sets containing A, that is, T,y -(A) = N{F :
A C F,X\F € T’y\/yl}.

Definition 2.4. Let A be any subset of X. The T,y -(A) is defined as
Tyv~y-(A) = U{U : U is a v V ~'-open set and U C A}.

Definition 2.5. Let (X, 7) be a topological space and A be a subset of X
and v and «' be operations on 7. Then A is said to be

1. vV +/-a-open if A C Tyym-(Tyynr-(Tyvy-(4)))
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2. vV ~'-preopen if A C Ty ~(Tyyy-(A))

3. vV ~'-semiopen [3] if A C Topynr-(Tyyy1-(A))

=~

vV ~'-semipreopen (or vV ~'-sp-open) if A C Ty -(Toynr-(Tyyr-(4)))
. vV 9/-b-open if A C T’va"(Tv\/'y"(A)) U Ty =(Tyvy-(4))

5
6. vV y/-regular open [2] if A =y~ (Tyyy-(4)).

vV~/-semipreinterior of A and denoted by sp7\+/-(A). The complement
of a vV 7/-semipreopen set is called a v V +'-semipreclosed set. It is clear

that spryvy-(A) = AN Ty (Tyvy-(Tyvyr-(4))).

Definition 2.6. Let (X,7) and (Y,0) be two topological spaces and let

/

v,v : T — p(X) be operations on 7. A mapping f : (X,7) — (Y, 0) is
said to be vV ~v/'-continuous (resp. vV ~'-a-continuous, vV ~'-precontinuous,
v V +'-semicontinuous, v V 4'-semiprecontinuous, v V 7'-b-continuous) if for
each © € X and each open set V of Y containing f(x) there exists a
vV +'-open (resp. vV «'-a-open, vV 7/-preopen, vV 7/-semiopen, vy V +'-
semipreopen, vV +'-b-open) set U containing x such that f(U) C V.

3. Some subsets in topological spaces

Definition 3.1. For a topological space (X, T) with the operations v, 7/,
we define the following:

1. D(a,5) = {A C X : AN Ty ~(Tyvy-(yvy (A))) = AN Ty =(Tyyy-

(4))}-

2. D(a,sp) = {A C X : AN Tyyy-(Tyvy-(yvy (A))) = AN Tyyyr-(Tyyuy-
(T'yV'y/'(A)))}'

3. D(a,b) ={ACX:AN T’YVV"(T’YV’Y'_(VV’Y’(A))) = (AN TVV’Y’_(T’YV’Y/'
(A)u(An Ty\/’y”(’@Vv”(A)))}'

4. D(p,ps) = {A C X : AN Ty ~(Tyyy-(4)) = AN Tyt (T =(Tyyy -
(A)))}-

5. D(p,b) ={AC X : AN Ty y-(Tyvy-(A)) = (AN Ty -(Tyvy-(A4))) U
(AN Ty (Tyvy=(A))) }-

6. D(s,ps) ={AC X : AN Tyyy-(yvy (A)) = AN Ty -(Tyyy-(A))
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7. D(s,0) = {A C X : AN Tyvy-(yvy(A)) = (AN Ty -(Tyvy=(4))) U
(A N TWVW"(TWVV"(A)))}'

8. D(b,sp) = {A C X : (AN Tyy-(Tyvy-(A))) U (A N Ty =(Tyyye-
(A))) = AN Ty ~(Tyvy=(Tyvy=(4)) }-

Example 3.2. Let X = {a,b,c} and 7 = {0, X, {a},{c},{a,c},{a,b}}.
We define the operations v,y : 7 — p(X) as follows

A if A = {a} or {c},
AU{a,c} if A # {a} and {c}

AY = AY — {
Observe that:
Tyvy = {0, X, {a}, {c} {a, c}}
D(a,s) = {0, X, {b},{c}, {a,c}}
a,sp) = {0, X, {b},{a,c}}
a,b) = {0, X, {b},{a,c}}.
,ps) = {0, X, {a}, {b},{c} {a, c}}.
,b) ={0, X, {a}, {b},{c},{a,c}}.
,ps) = {0, X, {a}, {0}, {c} . {a, c}}.
s,b) = {0, X, {a},{b}, {c},{a, b}, {a, c}, {b,c}}.
D(b, sp) = {0, X, {a},{b},{c},{a, b}, {a,c}, {b,c}}.
The v V ~'-semi open set = {0, X, {a},{c},{a,b},{b,c}}.
. The vV ~'-semi preopen set ={0), X, {a},{c}, {a, b}, {b,c}}.
12. The vV «/'-b- open set = {0, X, {a},{c},{a,b},{b,c}}.

Example 3.3. Let X = {a,b,c} and 7 = {0, X, {a},{c},{a,c},{a,b}}.
We define the operations v,y : 7 — p(X) as follows

o A ifA = {a},
| Au{a,c} if A+#{a}

~

D
D

S

p
D(p

v

(
(
(
(
(
(

D
D

© % N S ok N

~ =
~ O

e { int(cl(A)) if A ={a},
X if A # {a}

Observe that:
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1. Ty = {0, X}
2. D(a, s) = p(X)
3. D(a,sp) = {0, X}
4. D(a,b) = p(X).
5. D(p,ps) = p(X).
6. D(p,b) = p(X).
7. D(s,ps) = {0, X}.
8. D(s,b) = {0, X}.
9. D(b, sp) = {0, X}.

—
Sl

The vV ~'-semi open set = {(}, X }.

I~
~

. The ~y V ~'-semi preopen set =p(X).
12. The v V «'-b- open set = p(X).

Theorem 3.4. The following statements hold for a topological space (X, T)
with the operations v and ~':

1. Every D(a, sp)-set is D(p, sp)-set.
2. Every D(«, sp)-set is D(s, sp)-set.
3. Every D(p, sp)-set is D(b, sp)-set.
(s, sp) (b, sp)

4. Every D(s, sp)-set is D(b, sp)-set.

Proof. (1). Let A be a D(a,sp)-set. Then A N Tyyy-(Tyyy-(Tyvy-
(A))) = AN Tyyy-(Tyvy-(Tpvnyr-(A))). Now, AN Tyyni-(Toymy=-(Tyvy-(4))) =
AN Ty~ (T~ (Tyvy=(A))) T AN Ty (Tyvy=(A)) T AN Ty (o
(Tyv47-(A))). Thus it follows that A is a D(p, sp)-set.

(2). Let Abe a D(c, sp)-set. Then ANTyy=(Tyyy-(Tyvy-(A))) = ANTyyp-
(T~ (Tyvyr=(A))). Now, AN Tpynr=(Tyyy=(Tyvy=-(A))) = AN Ty (Tyyy-
(Tyvy=(A))) C AN Tyyy-(Tyyy=(A)) T AN Tyyy=-(Tyyy=(4)) T AN Tyyy-
(Tyvy=(Tyv-(A))). Thus it follows that A is a D(s, sp)-set.

(3). Let A be a D(p, sp)-set. Then ANTyy-(Tyvy-(A)) = ANTyyy-(Tyyqy-
(Tyvy=(A))). Since AN Tyyyr=(Tyvy=(Tyvy=(4))) = AN Tyyy-(Tyvy-(4)) C
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AmT’va/-(TWVWI-(A)) UAOT’YV'Y,_(T'VV'VI_<A)) - Aﬂ [7'7\/7/—(7'7\/7/-(14)) UT’y\/fy/-
(TWVV"(A))] - Aﬂ[TWVW"(TW\/V"(A))UT"/VW"(TW\/V"(A))] - AﬂUTy\/'y"(Tvv'y/'
(Tyvy=(AD) Ty =(Tyvy=(A)] = A O Tyyy=(Tyvy=(Tyvy-(A4))). - Tt follows
that A is a D(p, sp)-set.
(4) Analogous to (3). O

Example 3.5. In Example 3.2, we can see that the converse of the Theo-
rem 3.4, are not necessarily true.

Theorem 3.6. The following statements hold for a topological space (X, T)
with the operations v and ~':

1. A is vV v/-a-open if, and only if it is both ~ V +'-semiopen and
D(a, s)-set;

2. AisyV~'-a-open if, and only if it is both vV ~'-sp-open and D(a, sp)-
set;

3. A isyV+/-preopen if, and only if it is both vV ~'-b-open and D(p, sp)-
set;

4. Ais~yV~'-preopen if, and only if it is both yV~'-sp-open and D(p, sp)-
set;

5. A is v V +'-semiopen if, and only if it is both v V +'-sp-open and
D(a, p)-set;

6. A isyV~'-semiopen if, and only if it is both VvV ~'-b-open and D(s, b)-
set;

7. A is v V +/-semiopen if, and only if it is both v V ~'-sp-open and
D(s, sp)-set;

8. Ais yV~/-b-open if, and only if it is both vV ~'-sp-open and D(b, sp)-
set.

Proof. (1). By Definition 3.1, it is obvious that every vV 4/-a-open set
is D(a, s)-set. For the sufficiency of (1); Suppose that A is both vV ~/-
semiopen and D(a, s)-set. Then A C 7yy-(Tyvy-(A)) and ANTyy - (Tyyy-
(Tyvy-(A))) = ANTyyy-(Tyy-(A)). Since A C Tyyyr-(Tyv-(A)). Tt follows
that A N 7yyy-(Tyvy-Tyvay-(Tyvy-(A))) = A. Thus A is v V +'-a-open.

(2). Analogous to (1).
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(3). Let A be a vV +'-preopen set. Then A C 7yyy-(7yy-(A4)). Hence
A C Ty (Tyyy-(A) [Tyvyr-(Tyvy-(A)). Therefore A is vV 4/-b-open. On
the other hand by Definition 3.1 it follows that every v V 7/-preopen set
is D(p, b)-set. For the sufficiency of (3); Suppose that A is both vV 4/-b-
open and D(p,b)-set. Then A C Tyyy-(Tyvy-(A)) N Tyyyr-(Tyvy-(A)) and
AN Ty\/'y"(T'yV'y"(A)) = AN TwV’y"(T'yVW’"(A)) NAN T’yVW’"(T"/\/V"(A)) =
ANy~ (T =(A) [Ty (Tyvy-(A))]. Since A C Tyyy=(Tyvyr-(A)) N7y
(Tyvy-(A)), AN Tyyyr-(Tyvy-(A)) = A, showing that A is v V 7/-preopen.
(4). Let A be a vV +'-preopen set. Then A C 7y-(7yv-(A4)). Hence
A C Ty (T =(Tyvyr-(A))). Therefore A is vV +'-sp-open. On the other
hand by Definition 3.1 it follows that every ~ V ~'-preopen set is D(p, sp)-
set. Sufficiency of (4) is analogous to sufficiency of (3).

(5). Let A be a vV 7/-semiopen set. Then A C 7,y-(7yvy-(A)). Then
we have A CC Tyy/-(Tyyy-(Tyvy-(A))). Therefore A is vV +'-sp-open. On
the other hand by Definition 3.1 it follows that every 7 V 7'-semiopen set
is vV +/-D(«, p)-set. Sufficiency of (4) is analogous to sufficiency of (3).
(6) Analogous to (3).

(7). Let A be a vV 7/-semiopen set. Then A C 7y -(7yvy-(A)). Then
we have A N Tyyy-(Tyvy-(A)) CC Ty -(Tyvny-(Tyvy-(A))). Therefore A is
vV ~/-sp-open. On the other hand by Definition 3.1 it follows that every
vV 7/-semiopen set is v V 7'-D(s, sp)-set. Sufficiency of (7) is analogous to
sufficiency of (1).

(8). Let A be a vV ~'-b-open set then A C Tyyy-(Tyyy-(A)) U Ty
(Tyvy-(A)) implies that A C 7yyy-(Tyvy-(A)) or A C Tyyyr-(Tyvy-(A)). If
A C Tyyy-(Tyyy-(A)) then A C Tyyyr-(Tyvay-(Tyvyr-(A))), showing that A
is 7V 7/-sp-open. On the other hand by Definition 3.1 it follows that every
v V 74/-b-open set is vV +'-D(b, sp)-set. Sufficiency of (8) is analogous to
sufficiency of (1). O

Remark 3.7. In a topological space (X, T), the following hold:

1. The notions of 7y V ~'-semi open set and D(«, s)-sets are independent.
The notions of vV +'-sp-open and D(«, sp)-sets are independent.
The notions of vV 4'-b-open and D(p,b)-sets are independent.

The notions of vV +'-sp-open and D(p, sp)-sets are independent.

The notions of vy V v'-sp-open and D(«, p)-sets are independent.
YV

S

The notions of vV +'-b-open and D(s, b)-sets are independent.
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7. The notions of vV «'-sp-open and D(s, sp)-sets are independent.
8. The notions of vV ~'-sp-open and D(b, sp)-sets are independent.

Example 3.8. In Examples 3.2, and 3.3, we can obtain all needed infor-
mation related with Remark 3.7.

4. Some decomposition theorems

Definition 4.1. Let (X, 7) and (Y,0) be two topological spaces and let
7,7 : 7 — p(X) be operations on T and 3, 3" : ¢ — (X)) be operations
on o. A function f: (X,7) — (Y, 0) is said to be:

1. (vVv+',BV @')-precontinuous if for each x € X and each 3V [f'-open
set V of Y, there exist a vy V v'-open set U of X such that f(U) C V.

2. (yVv+/, BV p")-b-continuous if for each z € X and each SV 3'-open set
V of Y, there exist a vy V +'-b-open set U of X such that f(U) C V.

3. (vV+/, BV B)-a-continuous if for each © € X and each BV '-open set
V of Y, there exist a vy V +'-a-open set U of X such that f(U) C V.

4. (v VvV, BV B)-semicontinuous if for each x € X and each 3V f')-
open set V of Y, there exist a vV v'-semiopen U set of X such that
fU)cv.

5. (yV+,BV B)-sp-continuous if for each x € X and each BV [')-
open set V of Y, there exist a vV v'-sp-open set U of X such that
fU)Ccv..

6. (yV~',BVpB)-D(a,s)-continuous if f~1(V) € vV ~'-D(a, s) for each
Ve OBV -

7. (yV+',BVB")-D(a, p)-continuous if f~1(V) € vV ~'-D(a,p) for each
Ve OBV -

8. (vVv+,BV B)-D(a,sp)-continuous if f~H(V) € vV ~v'-D(a, sp) for
eachV € oBvg! -

9. (yV+,BV p)-D(p,b)-continuous if f~1(V) € vV +'-D(p,b) for each
Ve OBV -

10. (yv+/, BV B")-D(p, sp)-continuous if f~H(V') € yV~'-D(p, sp) for each
V S 0'5\/6/.
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11. (yV+/, 8V B)-D(s,b)-continuous if f~1(V) € vV ~'-D(s,b) for each
Ve TBva -

12. (yVv+, BV B)-D(s, sp)-continuous if f~1(V) € yV+'-D(s, sp) for each
Ve OBV -

13. (yV+', BV B')-D(b, sp)-continuous if f~1(V) € yV+'-D(b, sp) for each
Ve TBva -

Remark 4.2. It is easy to see, from Theorem 3.6, we can obtain many
relations between the diffrent forms of continuity described in Definition
4.1, for example:

1. Every (vV+/,8V B')-D(«, sp)-continuous is (v V', BV ')-D(p, sp)-
continuous.

2. Every (yV+,8V B)-D(«a, sp)-continuous is (yV ~', 8V B')-D(s, sp)-
continuous.

3. Every (yV~',8V B')-D(p,ps)-continuous is (v V', BV B')-D(p, sp)-
continuous.

4. Every (yV+/,8V B')-D(s, sp)-continuous is (v V ~', 8V §')-D(b, sp)-
continuous.

As an immediate consequence of Theorem 3.6,we have the followings
theorems.

Theorem 4.3. For a function f : (X,7) — (Y, 0), the following statements
are equivalent:

1. fis (yV«, BV pB)-a-continuous,
2. fis(yVvy, BVp')-semicontinuous and (yV+', BVS')-D(«, s)-continuous,
3. fis(yVvy',BVp)-b-continuous and (yV~', BV S")-D(«, sp)-continuous.

Theorem 4.4. For a function f : (X,7) — (Y, 0), the following statements
are equivalent:

1. fis (yV+/, BV B')-precontinuous,

2. fis(yV+,BV3)-b-continuous and (yV~', BV 3')-D(p, b)-continuous,



1200 C. Carpintero, R. Nirmala, N. Rajesh and E. Rosas

3. fis(yVy/,BVp')-b-continuous and (yV+', 3V B')-D(p, sp)-continuous.

Theorem 4.5. For a function f : (X,7) — (Y, 0), the following statements
are equivalent:

1. fis (yVv+/, BV 3)-semicontinuous,

2. fis(yV+',BVp3)-b-continuous and (yV~', BV ')-D(s,b)-continuous,
3. fis(yVvy,BVp')-sp-continuous and (yV+', BV 3')-D(«, p)-continuous,
4. fis(yVvy', BVB')-sp-continuous and (yV+', BVE')-D(s, sp)-continuous.

Theorem 4.6. For a function f : (X,7) — (Y, 0), the following statements
are equivalent:

1. fis (yV+, BV [()-semicontinuous,

2. fis(yVvy,BVpE")-b-continuous and (yV~', BV S')-D(b, sp)-continuous.
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