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a b s t r a c t

This paper presents the data of multimodal functions that emulate
the performance of an array of five photovoltaic modules under
partial shading conditions. These functions were obtained through
mathematical modeling and represent the PeV curves of a
photovoltaic module with several local maximums and a global
maximum. In addition, data from a feedforward neural network
are shown, which represent an approximation of the multimodal
functions that were obtained with mathematical modeling. The
modeling of multimodal functions, the architecture of the neural
network and the use of the data were discussed in our previous
work entitled “Search for Global Maxima in Multimodal Functions
by Applying Numerical Optimization Algorithms: A Comparison
Between Golden Section and Simulated Annealing” [1]. Data were
obtained through simulations in a C code, which were exported to
DAT files and subsequently organized into four Excel tables. Each
table shows the voltage and power data for the five modules of the
photovoltaic array, for multimodal functions and for the approxi-
mation of the multimodal functions implemented by the artificial
neural network. In this way, a dataset that can be used to evaluate
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1. Data

The data of the multimodal functions presented in this article were obtained through simulation of
an array of five 65 W photovoltaic modules type YL65P-17b.

In Figs. 1e4, the four multimodal functions are shown, which differ in the number and location of
themaximums. In each of the figures there are six curves, of which five correspond to the PeV curves of
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Fig. 1. PeV curves and multimodal function No. 1.
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each of the photovoltaic modules of the array. Each of these curves was generated using different
values of solar irradiance and operating temperature for each PVmodule in the array. The other curve is
the multimodal function obtained with the sum of the previous ones, which also represents a PeV
curve that emulates partial shading conditions.

Tables 1e4 of the supplementary material show the data of the PeV curves (power in watts and
voltage in volts) according to the previous description and the information presented in Figs. 1e4. In
addition, the data obtained with the neural network to approximate the four multimodal functions are
presented.

The data presented in the four tables of the supplementary material have the same structure.
Initially, the power and voltage data of each of five PV modules are presented. Subsequently, there are
the power and voltage data of the multimodal function. Finally, there are the power and voltage data
obtained with the neural network.
2. Experimental design, materials, and methods

To represent the multimodal functions, the mathematical model shown in equation (1) was used,
which shows the current-voltage ratio (IeV) of a PV module [2].

IðVÞ¼ Ix
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where Vx and Ix represent the open circuit voltage and the short-circuit current of the PV module for
dynamic values of solar irradiance and operating temperature.



Fig. 2. PeV curves and multimodal function No. 2.

Fig. 3. PeV curves and multimodal function No. 3.
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Fig. 4. PeV curves and multimodal function No. 4.

C. Robles-Algarín et al. / Data in brief 27 (2019) 104669 5
Vx ¼ s
Ei
EiN

TCvðT � TNÞþ sVmax � sðVmax �VminÞe

�
Ei
EiN

ln

�
Vmax�Voc
Vmax�Vmin

��
(2)

Ix ¼ p
Ei
EiN

½Isc þ TCiðT � TNÞ� (3)

where s and p represent the number of PV modules in series and parallel. The parameters used for
modeling are shown in Table 1.
Table 1
Specifications of the photovoltaic module.

Parameter Description Value

VMPP Voltage at maximum point 17.5 V
IMPP Current at the maximum point 3.71 A
Isc Short-circuit current 4 A
Voc Open circuit voltage 21.7 V
Tcv Temperature coefficient of voltage �0.0802 V/�C
Tci Temperature coefficient of current 0.0024 A/�C
Ei Variable solar irradiance Variable (W/m2)
EiN Constant solar irradiance value 1000 W/m2

T Variable operating temperature Variable (�C)
TN Constant temperature value 25 �C
VMAX Maximum voltage of the PV module 22.35 V
VMIN Minimum voltage of the PV module 18.44 V
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With the mathematical model described by Equations (1)e(3) and with the parameters established
in Table 1, a C code was performed to model the performance of a PV module for dynamic values of
solar irradiance and operating temperature.

Each multimodal function was obtained from an array of five PV modules. Each module was
configured to operate with different values of solar irradiance and operating temperature, obtaining
five series of data which were named as follows in the supplementary file: Power of the PV Module
No.1, Power of the PV Module No.2, Power of the PV Module No.3, Power of the PV Module No.4 and
Power of the PV Module No.5. Each of these data series corresponds to the ideal curve that charac-
terizes the PeV curve of a PV module.

By varying the irradiance and temperature, the PeV curve is affected on the x and y axes. Conse-
quently, the number of samples between the data sets are not uniform in any of the axes, some contain
more samples than others. For this reason, to obtain the multimodal functions, all the y-axis values are
added, while for the x-axis, the voltage datawith the largest number of samplesmust be selected. Thus,
multimodal functions are made up of the sum of all the values of the y-axis and the set of the greatest
amount of data on the x-axis.

With the procedure described above, five multimodal functions were obtained representing the
PeV curves of a PVmodulewithmultiple local maximums and a global maximum. This situation shows
the performance of PV modules in partial shading conditions [3]. These types of functions are ideal for
evaluating the performance of numerical optimization algorithms to find a global maximum [4,5].
Therefore, the data obtained can be used to evaluate the performance of maximum power point
tracking controllers that use intelligent control techniques (such as fuzzy logic and neural networks)
[6] and numerical optimization algorithms, in scenarios that simulate extreme conditions of irradiance
and operating temperature [7,8].

When evaluating multimodal functions with optimization algorithms, individual contributions of
PV modules can be detected [1]. For this reason, the algorithm is not able to optimize the entire
function. In that sense, the data obtained with an artificial neural network are presented in order to
have in a single function all the contributions of the PV modules.

For the training of the neural network, a normalization of the data was performed at an interval of
[�1,1]. Once the networkwas trained, the inverse of normalizationwas implemented to return the data
to the original scale. For this, a feedforward network with a hidden layer, 25 neurons and an output
layer with a single neuronwas used. A hyperbolic tangent sigmoid transfer function was used for each
neuron.

The data obtained with the neural networks to approximate the multimodal functions can be used
to evaluate the performance of different system identification techniques [9], using tools such as the
System Identification Toolbox for Matlab, which allows representing the dynamics of nonlinear sys-
tems as presented in this work.
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