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Adsorption is a unit operation widely used for the tertiary treatment of the most diverse effluents, whose mecha-
nism is based on removing recalcitrant compounds from the organic and inorganic origin. In this process, choosing
a suitable adsorbent is a fundamental point. This review article focuses on the adsorbentswith natural geological or-
igin: minerals, clays, geopolymers, and even wastes resulted from mining activity. Therefore, over 450 articles and
research papers were explored. These materials' main sources are described, and their characteristics, composition,
and intrinsic properties are related to adsorption. Herein, we discuss the effects of several process parameters, such
as pH, temperature, pollutant, and adsorbent concentration. Furthermore, equilibrium, kinetics, and thermodynamic
aspects are also addressed, and relevant regeneration prospects and final disposal. Finally, some suggestions and
perspectives on applying these adsorbents in wastewater treatment are presented as future trends.
©2021ChinaUniversity of Geosciences (Beijing) andPekingUniversity. Production andhostingby Elsevier B.V. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Around95%of the Earth's crust is constituted by rock and rock-based
composts; therefore, geological materials are abundant and accessible
(Banning, 2020; Ronov and Yaroshevsky, 1922; Taylor and McLennan,
1985) Meanwhile, due to our planet's population's growth and need
for more significant development, more and more areas are explored,
and more cities are built. Because of these anthropogenic actions, geo-
logic materials are dislocated and disposed of as residues, creating an
environmental problem (Bettencourt et al., 2007; Folke et al., 2020;
Ghernaout et al., 2020). After considering that these materials are
mostly made up of silicon, oxygen, and other metal oxides (Folk,
1954), several studies have demonstrated interest in applying and in-
vestigating their natural properties towards adsorption, aiming the re-
moval of environmental pollutants as a bright and elegant way of
solving two growing problems (Atun et al., 2009; Bundschuh et al.,
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2011; Dong et al., 2020; Gu et al., 2019; Li and Arai, 2020; Roy and
Krapac, 1994; Teymouri et al., 2020b; Tsai et al., 2006).

Adsorption is one of the most effective techniques in advanced waste-
water treatment and can be employed to reduce or even remove hazard-
ous organic and inorganic pollutants present in the effluent (Burakov
et al., 2018; Crini, 2006; Dabrowski, 2001; De Gisi et al., 2016; Dotto
et al., 2016; Dotto and McKay, 2020; Lütke et al., 2019). The process con-
cerns the accumulationof a substance at the interfacebetween twophases,
liquid-solid or gas-solid (Liu and Jiang, 2010; Tóth, 1995). The substance
that accumulates at the interface is named adsorbate, while the solid on
which adsorptionoccurs is the adsorbent (Fig. 1) (Dotto andMckay, 2020).

Adsorption can occur by chemical sorption and physical sorption (Di
Toro, 1985; Hammond and Conner, 2013). Chemical adsorption, or
chemisorption, consists of forming strong chemical associations – or
even bonds – between molecules or ions of adsorbate to the adsorbent
surface (Breeuwsma and Lyklema, 1973; Fan et al., 2020; Hong et al.,
2020). Contrarily, physical adsorption, or physisorption, is described
by intermolecular interactions between adsorbate and adsorbent. Nev-
ertheless, the main physical forces controlling adsorption are van der
Waals forces, hydrogen bonds, polarity, dipole-dipole, and π-π interac-
tions (Chen et al., 2020; Halsey, 1948; Li et al., 2019a).
and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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Fig. 1. Representation of the adsorption mechanism in liquid and solid fase.
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Overall, adsorption provides an attractive alternative for the treatment
of polluted waters, especially if the sorbent is inexpensive, which geolog-
ical originated materials can be (Asfaram et al., 2014; Ghaedi et al., 2015;
Saif Ur Rehmanet al., 2013; Shamset al., 2013a;Uddin, 2017). This review
article presents how natural, geological originated materials, such as
minerals, clays, geopolymers, and even waste resulting from mining ac-
tivity, can be applied towater treatment and decontamination purposes.
The geological materials characteristics, composition, and intrinsic prop-
erties related to adsorption are presented. The effects of several process
parameters, such as pH, temperature, pollutant, and adsorbent concen-
tration, are discussed. Furthermore, equilibrium, kinetics, and thermody-
namic aspects are also addressed mainly, according to each application.
Finally, some suggestions and perspectives on applying these adsorbents
in wastewater treatment are presented as future trends.

2. Mineral adsorbents

More than 4000 naturally occurring minerals have been found on
Earth (Haldar and Tišljar, 2013). To be classified as a mineral, the solid
Table 1
Mineralogical classification of geological originated adsorbents reported in the literature.

Group Mineral Molecular formula

Silicates Feldspars KAlSi3O8

NaAl2Si3O8

CaAl2Si2O8

Micas KAl2(Si3Al)·O10(OH)2
K2(MgFe)6(SiAl)8O20(OH)4

Amphiboles Na, Ca, Mg, Fe, Al silicate
Pyroxenes Ca, Mg, Fe, Al silicate
Olivine (MgFe)2SiO4

Hydrous silicate Kaolinite Al2Si2O5(OH)4
Oxide Quartz SiO2

Aluminum Al2O3

Iron oxides Fe2O3

(Fe2O3)2(H2O)3
Fe3O4

Carbonates Calcite CaCO3

Dolomite CaMg(CO3)2

2

must be inorganicwith characteristic chemical composition and specific
crystal structure (Haldar and Tišljar, 2013; Mitchell et al., 1994). Due to
the abundant presence of oxygen, silicon, and aluminum, silicates and
aluminosilicates are quantitatively the most relevant class of minerals.
Furthermore, the following classes are recognized: native elements; sul-
fide, telluride, arsenide, and selenideminerals including sulfosalts of an-
timony and bismuth; halides; oxides; hydroxides; carbonates; nitrates;
borates; chromates; tungstates; molybdates; phosphates; arsenates;
vanadates; silicates and aluminosilicates (Mitchell et al., 1994). For ad-
sorption application purposes, the most relevant minerals are silicates,
hydrous silicates, oxides, and carbonates (Cornell, 1993; Pehlivan
et al., 2009; Rao et al., 1991; Zhang et al., 2019b).

In general, there are several critical parameters for a material to be
considered a potentially promising adsorbent, such as its surface area,
and porosity, surface charge, mechanical strength, and the surface chem-
istry of the adsorbent (Dotto et al., 2016; Lütke et al., 2019). In Table 1, it is
presented the classifications and the average surface area, connecting
geological materials and adsorption (Brantley and Mellott, 2000;
Giménez et al., 2007; Hodson, 1998; Meier et al., 1994; Nandi et al.,
2009; Reddy and Claassen, 1994; Sorwat et al., 2020; Walker et al.,
2003; Wang et al., 2020a; Wang and Zhang, 2020; Yan et al., 2020). Sev-
eral examples of the application of minerals in adsorption have been re-
ported for various types of contaminants. Talc, chalcopyrite, and barite
were tested against the removal of lead ions from liquid wastes
(Rashed, 2001), while bisphenol-A adsorption onto andesite, diatoma-
ceous earth, titaniumdioxide, and activated bleaching earthwere studied.
Their results were compared to those of different carbon-basedmaterials
(Tsai et al., 2006). Bituminous coal, pumice stone, coconut coal, and volca-
nic zeolite were evaluated to remove nitrogen, phosphorus, aluminum,
iron, cyanobacteria, and saxitoxins (Guimarães Neto and Aguiar, 2020).
Furthermore, mineral adsorbents' addition to porous concrete was also
investigated to reduce groundwater pollution (Teymouri et al., 2020a,b).

2.1. Silicates

2.1.1. Feldspar
Feldspar is, up to now, little explored when compared to other min-

erals. In a thorough search, very few related studies were found on its
adsorption capacity towards environmental pollutants. However, feld-
spar is estimated to be the greatest rock-forming mineral in the earth
crust (Branlund and Hofmeister, 2012; Horai, 1971; Janecke and
Evans, 1988); hence, it is a potentially low-cost industrial material
that can be employed in environmental, economic processes (Yazdani
et al., 2012). They can also undergo thermal treatment operations to im-
prove its sorption capacity (Pelte et al., 2000).
Average surface area Reference

(m2 g−1)

0.8 Hodson (1998)

100 Meier et al. (1994)

3.1 Brantley and Mellott (2000)
2.3 Reddy and Claassen (1994)
1.5 Brantley and Mellott (2000)
13.69 Meier et al. (1994)
0.17 Sorwat et al. (2020)
122 Wang et al. (2020a)
0.381 Giménez et al. (2007)
10.26 Yan et al. (2020)
37.21 Sorwat et al. (2020)
0.5 Wang and Zhang et al. (2020)
0.7 Yan et al. (2020)

Image of Fig. 1
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The adsorption isotherms, kinetics, and thermodynamics of the cat-
ionic dyes Basic red 18 and Basic Blue 41 onto feldspar were investi-
gated, considering both single and binary systems. The optimal
adsorbent dosage was 2.5 g L−1, with the dye's concentration ranging
from 12.5 to 50 mg L−1 (Yazdani et al., 2012). The dye uptake capacity
increased as pH increased from 2.5 to 8. This behavior is an exciting
point because most effluents' final pH is around 5–8; therefore, no pH
adjustment would be necessary (Boczkaj and Fernandes, 2017). Their
adsorption behavior followed Langmuir for single and extended Lang-
muir isotherms for binary systems, respectively. The adsorption kinetics
was found to conform to pseudo-second-order kinetic for both systems.
Meanwhile, the thermodynamic data showed that dye adsorption onto
Feldspar was spontaneous, endothermic, and physisorption was the
dominant mechanism (Yazdani et al., 2012).

Besides organic molecules, the adsorption of potentially harmful
ions has also been studied in natural and modified feldspar. Ferric
ions, uranium (U(VI)), and arsenic (As(V)) are some examples (Al-
Anber, 2015; Ding et al., 2014; Yazdani et al., 2016). Natural feldspar
was useful for removing Fe3+ ions from an aqueous solution. The max-
imum removal was found at a low-level initial concentration of Fe3+

ions (30 mg L−1) on 40 g L−1 of adsorbent dosage, 30 °C, and a contact
time of 180 min. Finally, it was concluded that the adsorption mecha-
nism was chemisorption (Al-Anber, 2015). In Table 2, a summarization
of the technical results on feldspar adsorption is presented.

2.1.2. Micas
Micas are monoclinic pseudohexagonal crystals, similar in che-

mical composition, with the general molecular formula of X2Y4–6Z8O20

(OH, F)4 – where X is K, Na, or Ca, Y is Al, Mg, or Fe, and Z is Si or Al
but alsomay include Fe3+ or Ti (Frye, 2006). Some examples are biotite,
muscovite, lepidolite, phlogopite, zinnwaldite, and margarite (Deer
et al., 2013). This mineral was employed in few studies, mostly for the
adsorption of metal ions, surfactants, and pharmaceuticals
(Alexandre-Franco et al., 2011; Gier and Johns, 2000; Klapyta et al.,
2001; Li et al., 2019b, 2019c; Martín et al., 2018, 2019; Orta et al.,
2018; Osuna et al., 2019; Pazos et al., 2017).
2.2. Oxides

The oxides include about 40 cationic elements in their composition,
such as Si, Ti, Nb, Ta, Mn, Al, Mg, Sn, and Zr combined with oxygen or
hydroxyl (Frye, 2006; Marfunin, 1994). The most commonly known
and occurring are cuprite (Cu2O), corundum (Al2O3), hematite
(Fe2O3), cassiterite (SnO2),magnetite (Fe3O4), ilmenite (FeTiO3), perov-
skite (CaTiO3), brucite (Mg(OH)2) and gibbsite (Al(OH)3) (Frye, 2006;
Marfunin, 1994). Among the above-citedminerals,magnetite, hematite,
and ilmenite stand out. Because iron is present in their structure, simul-
taneous degradation reactions can occur, a process known and well
Table 2
Main feldspar applications in adsorption.

Adsorbent Dosage Adsorbate

(g L−1)

Natural feldspar 2.5 Basic blue 41
Basic red 18

Surfactant-modified feldspar 0.5 Acid black 1
Acid red 14

Chitosan/Feldspar biohybrid 4 Acid black 1

Natural feldspar 40 Fe3+

Raw sodium feldspar 1 U(VI)
Natural feldspar 8

3

established as Fenton reactions (Ghernaout et al., 2020). Moreover,
the naturally occurring oxide of titanium, TiO2, is typically obtained
from the minerals ilmenite, rutile, and anatase (Lahiri and Jha, 2007).
It is widely used as a pigment in paints and personal care products,
and its activity as a photocatalyst is well-established (Diebold, 2003;
Weir et al., 2012). Still, these light-interacting properties are mostly
used to degrade pollutants, not adsorption per se (Shiraishi et al., 2005).

Magnetic properties are ofmost interest, considering the difficulty of
separating solid catalysts from aqueous solutions (Serpone et al., 2010).
Therefore, Fe3O4 is the most popular iron oxide: there are about 15
times more studies published on its regard than hematite and ilmenite.
Magnetite properties as adsorbent are widely known and accepted
(Milonjić et al., 1983;Udovic andDumesic, 1984),mostly by the adsorp-
tion of ions as phosphate, arsenite, and arsenate (Daou et al., 2007; Yean
et al., 2005), but its use for adsorption of organic molecules has been re-
ported only with hybrid materials (Cheng et al., 2012b; Qin et al., 2014;
Vieira et al., 2020).

Overall, this class of natural geologicalmaterials is interesting for ad-
sorption applications because, in their structure, they have metal atoms
electrostatically charged or in different oxidation states, which en-
hances the attraction of the pollutant to the adsorbent surface and, con-
sequently, increases the total removal efficiency (Khaleel et al., 1999;
Velazquez-Jimenez et al., 2015;Wang et al., 2020a). Table 3 is presented
a portrait of the most relevant studies on adsorption onto oxides.
2.3. Carbonates

In geology and mineralogy, minerals dominated by the carbonate
ion, CO3

2−, are designated simply as carbonates, which are incredibly
varied and omnipresent in chemically precipitated sedimentary rocks
(Lippmann, 1973). The trivial are calcite, dolomite, and siderite (Curtis
and Coleman, 1986; Pearce et al., 2013). Calcite, CaCO3, is the primary
constituent of limestone and the main component of mollusk shells
and coral skeletons (Lorens, 1981; Somasundaran and Agar, 1967;
Wray and Daniels, 1957). Dolomite, CaMg(CO3)2, is used as an orna-
mental stone, a concrete aggregate, and a source of magnesium oxide
(Baker and Kastner, 1981; Sibley and Gregg, 1987; Warren, 2000). Sid-
erite, FeCO3, is the essential iron ore and has been used for steel produc-
tion (Matthiesen et al., 2003; Mozley, 1989; Zhu et al., 2020). Moreover,
some other popular carbonates, such as sodium carbonate and potas-
sium carbonate, have been used since antiquity for cleaning and preser-
vation, as well as for the manufacture of glass (Freilich et al., 2014;
Konkol and Rasmussen, 2015; Krumbein et al., 1991; Wood et al.,
1984). Carbonates are widely used in industry, e.g., in iron smelting, as
a raw material for Portland cement and lime manufacture, in the com-
position of ceramic glazes, and more (Al-Shalabi and Sepehrnoori,
2016; Boyjoo et al., 2014; Clements, 2003; Dhami et al., 2013).
C0 qmax Reference

(mg L−1) (mg g−1)

25 11.11 Yazdani et al., 2012
25 10.75
10 6.37 Yazdani et al., 2012
10 3.98
25 4.16 Yazdani et al., 2014
50 8.33
75 12.5
100 16.12
125 17.24
30 25 Al-Anber, 2015
0.5 0.314 Ding et al., 2014
5 235.3 Yazdani et al., 2016



Table 3
Most important aspects of the adsorption studies using oxides for pollutant removal.

N. Adsorbent Adsorption test Reference

Type Specific
surface
area

Pollutant Adsorbent
dosage

Pollutant
initial
concentration

pH Amount adsorbed Isotherm
type

R2

(m2

g−1)
C0 qmax

1 Cuprite 2.15 Diethyldithiocarbamate 20 g L−1 30 g L−1 7 6.08 g g−1 – –
2 Perovskite 0.21 Dichlorvos 1 g L−1 100 mg L−1 5 50 mg g−1 Freundlich 0.99 Ghernaout et al.,

2020
3 18 Rhodamine B 2 g L−1 100–00 mg

L−1
2.5–12 182.2 mg g−1 Langmuir 0.99 Deng et al., 2017

4 Gibbsite 44.1 Nortriptyline 100 m2

L−1
0.1 mM 3–12 2.4 ± 0.1 μmol m−2 Langmuir 0.99 Sadri et al., 2018

5 5.82 Sb 10 g L−1 1 μmol L−1 5.5 38.66 mmol kg−1 Langmuir 0.98 Essington &
Stewart, 2015

6 18 Se 0.8 g L−1 19 μmol L−1 3 9.5 mmol kg−1 Triple-layer
model

– Goldberg, 2014

7 Hematite 19.4 Phenol 5 g L−1 10 mg g−1 2–7 16.17 mg g−1 Langmuir 0.99 Dehghan and
Anbia, 2017

8 100.5
Methylene blue and other metal ions - Cr, Co,
Ni, Cu, Cd, Hg e Pb

0.62 g L−1 5–40 mg L−1 6.5 44.7 mg g−1 Langmuir 0.99 Sengupta et al.,
2017

9 73.9 Congo Red 0.3 g L−1 400–100 mg
L−1

– 628.9 mg g−1 Langmuir 0.99 Xu et al., 2012

10 Ilmenite 90.6 Methylene blue 0.03 g L−1 0.5–8 mg L−1 5.5 71.9 mg g−1 Langmuir 0.97 Chen, Jin, et al.,
2011

11 152.3 Congo red, Methyl orange, and Methylene
blue

0.3 g L−1 50–500 mg
L−1

7.2 723.8, 150.7, and
54.5 mg g−1

Sips 0.98 Kang et al., 2018

12 Magnetite 44.82 Acid Red 18 0.75 g L−1 25–100 mg
L−1

3 16.259 mg g−1 Freundlich 0.98 Berizi et al., 2016

13 23.35 Pb 10 mg L−1 110 mg L−1 6 41.66 mg g−1 Langmuir 0.99 Singhal et al.,
2017

14 98.8 As 2.5 g L−1 45 mmol L−1 4.8 20.8 mg g−1 Langmuir Daou et al., 2007
15 14.180 Tl 2 g L−1 20–100 mg

L−1
6–9 1123 mg g−1 Temkin 0.98 Li and Arai, 2020
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The removal of phosphate species from solution by adsorption onto
natural-calcite was evaluated alongside the effect of pH, phosphate/
mineral ratio, and contact time (Karageorgiou et al., 2007). The results
indicated that pH plays an important role, and the adsorption process
is more efficient in the basic pH region. The orthophosphate removal
is almost complete for concentrations as high as 60 mg L−1 of phos-
phate, which corresponds to 0.1 to 1 mM g−1 pollutant to adsorbent
ratio (Karageorgiou et al., 2007). Tannic acid, a calcite flotation agent
widely used in mineral processing, had its mechanisms and behaviors
studied on calcite surfaces, utilizing isothermal, kinetic, and thermody-
namic studies. The adsorption capacity of tannic acid increasedwith ini-
tial concentration in the optimal pH 8. Sips isotherm model best
predicted equilibrium data, while the adsorption kinetics followed a
pseudo-second-order model, indicating that the adsorption process
was controlled by chemical reaction. Themaximum adsorption capacity
was 13.55 mg g−1, considering 10 g L−1 of calcite and 100 mg L−1 of
tannic acid (Karageorgiou et al., 2007). Moreover, other studies were
conducted: regarding the dynamic of asphaltene adsorption on calcite
packs (Karageorgiou et al., 2007); L-malic, D-malic, and succinic acid ad-
sorption (Li et al., 2019a); determination of Ni isotope fractionation its
adsorption processes (Castillo Alvarez et al., 2020); arsenate
(Markovski et al., 2014a) and Cd(II) (Song et al., 2011) on modified cal-
cite; aswell as amolecular simulation study on the adsorption of hydro-
gen sulfide in calcite pores (Cai et al., 2020).

Even though calcite is themost commonly foundmineral, dolomite is
the most studied carbonate towards adsorption. The adsorption of sev-
eral potentially toxic ionswas tested on dolomite, such as those of the el-
ements strontium and barium (Ghaemi et al., 2011), copper and lead
(Pehlivan et al., 2009; Şenol and Şimşek, 2020), arsenate (Ayoub and
Mehawej, 2007), chromium (Albadarin et al., 2012; Stefaniak et al.,
4

2000), cadmium and nickel (Mohammadi et al., 2015), and fluoride
(Wongrueng et al., 2016). As an outcome, all studieswarranted dolomite
as a cheap and useful solid material, with good adsorption properties to-
wards hazardous inorganic compounds (Stefaniak et al., 2000).

Siderite has been applied as a pristine mineral (Erdem and Özverdi,
2005; Hajji et al., 2019;Wang and Reardon, 2001), as well as the princi-
pal constituent in iron-rich sludge adsorbents (Qu et al., 2020; Sharma
et al., 2013b; Zhu et al., 2018, 2019). By using stirred flow-through reac-
tor experiments, siderite (90 m2 g−1) adsorption of As(III), Cr(VI), and
competitive As(III)/Cr(VI) was reinvestigated. As and Cr sorption iso-
therms fit the Langmuir model. Its competitive sorption responded to
a sigmoidal Hill model. The maximum uptake for each pollutant was
around 60 mg g−1 (Hajji et al., 2019). Conversely, by submitting the
wasted iron mud to hydrothermal treatment, a magnetic adsorbent re-
moved other metals from smelting wastewater. The modification acted
upon ferrihydrite's reductive dissolution to recompose the natural sid-
erite, which was then re-oxidized tomaghemite. As a result, at the dos-
age of 12.5 g L−1, a removal efficiency around 99% of Cu2+, Zn2+, Pb2+,
and Cd2+ was attained (Zhu et al., 2018).

Moreover, magnesite, smithsonite, aragonite, and bastnasite have all
been applied to the wastewater treatment to some extent. Magnesite
was employed in phosphate from municipal effluents (Masindi et al.,
2016; Mavhungu et al., 2019) and as an adsorbent for cationic and an-
ionic dyes (Ngulube et al., 2018). Lead (Zhang et al., 2019a), iron
(Deng et al., 2017), and 8-hydroxyquinoline onto smithsonite have
been studied (Cristina et al., 2011). As for aragonite, cadmium (Van
et al., 2019; Yang et al., 2018), phosphate (Millero et al., 2001), and
methanoic acid adsorption have been reported (Cooper and De Leeuw,
2002)(). Finally, alkyl hydroxamic acid's adsorption mechanism onto
bastnasite was explored (Millero et al., 2001).
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3. Clays

Clays are phyllosilicate minerals with layered structural units, consti-
tuted of one or two tetrahedral silica sheets around an octahedral alumi-
num sheet (Brigatti et al., 2006; Velde, 1995). They present small particle
sizes, typically of less than 2 μm, and high specific surface areas, as a result
of their complex porous structures, which facilitates physical and chemi-
cal interactionswith dissolved species (Bertagnolli et al., 2011; Djomgoue
andNjopwouo, 2013; Luo andDaniel, 2003).Moreover, some specific fac-
tors determine how the adsorption process will occur onto clay minerals.
Besides some of its specific properties, the contact time, clay dosage, and
pH, play important roles (Otunola and Ololade, 2020).

Two essential topics on clay adsorption are its cation exchange ca-
pacity (Chapman, 2016) and specific surface area (Carter et al., 2018),
because in this case, it is understood that they rule its adsorption capa-
bility (Dabrowski, 2001). Both properties are related: while cation ex-
change capacity translates as the total negative charge (Ammann
et al., 2005; Lipson and Stotzky, 1983), the specific surface area is the
total surface area with available adsorption sites (Kuila and Prasad,
2013; Macht et al., 2011). The larger the surface area, the greater is
the cation exchange capacity (Ersahin et al., 2006; Kuila and Prasad,
2013). Besides, it is attractive to the point that variations found in
these properties determinations can be attributed to the fact that
some clayminerals have only external layers, such as kaolinite and illite,
and others have internal and external layers, such as smectites and
attapulgite (Hepper et al., 2006).

Another critical variable in adsorption studies is the contact time,
which is how long the adsorbent needs to be in the same medium as
the pollutant to achieve maximal removal efficiency (McKay, 1982;
Suliestyah Hartami and Tuheteru, 2020; Yang et al., 2009). The adsorp-
tion rate of clays tends to increase with the increased contact time, re-
maining constant until equilibrium is reached (Yin and Zhu, 2016).
Moreover, the contact time varies according to clay dosage (Otunola
and Ololade, 2020). There are no specific guidelines determining clay
dosage for wastewater treatment; therefore, previous studies and liter-
ature search is needed before application. It has been discussed that a
small dosage, around 1 to 3 g L−1, of clay minerals, is enough to adsorb
reasonable concentration pollutants from contaminated effluents
(Kausar et al., 2018; Lazaratou et al., 2020).

Moreover, observations on the influence of the pH of the system
demonstrated that, as pH increases, there is an immediate increase in
the rate of adsorption (Akpomie and Dawodu, 2016; Chen et al.,
2011b; Es-Sahbany et al., 2019; Otunola and Ololade, 2020; Potgieter
et al., 2006). However, it must be emphasized that pH also regulates
other processes, such as the chemical equilibrium of the target pollutant
molecule with the clay (Beattie, 1956; Hackling and Garnett, 1985).
Therefore, even though generally basic pH enhances the clays' adsorp-
tion capacity, this is not a rule (Győrfi et al., 2020; Hamza et al., 2020;
Maleki and Karimi-Jashni, 2020; Obayomi et al., 2020; Romdhane
et al., 2020).

3.1. Kaolinite

One of the most currently applied geological materials for adsorp-
tion belongs to the hydrous silicates class: kaolinite (Velde, 1995). Its
general molecular formula is Al2Si2O5(OH)4. Kaolinite is a layered sili-
cate mineral, with one tetrahedral sheet of silica linked through oxygen
atoms to one octahedral sheet of alumina octahedral (Essington and
Stewart, 2015; Kuila and Prasad, 2013; Sadri et al., 2018).

Ghorbanzadeh et al. (2015) reported on the removal of arsenate and
arsenite from aqueous solution. Kaolinite surface area was determined
as 10.1 m2 g−1. Adsorption isotherms were conducted with initial arse-
nic concentrations of 0.05, 0.06, 0.1, 0.15, and 0.2 mmol L−1, with 27 g
L−1 of the adsorbent. The equilibriumwas studied for 24 h. Optimal ad-
sorption pH for As5+ was found to be around 5 (99.9%), with the effi-
ciency rates decreasing as pH increased. For As3+ adsorption, at pH 7,
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the maximum adsorption capacity reached was 380 μg g−1. Both As
(V) and As(III) adsorption isotherms fit the Langmuir model (R2 =
0.968 and 0.979, respectively), and qmax values of 0.203 and 0.241 mg
g−1 (Ghorbanzadeh et al., 2015).Mohapatra et al. (2007) observed sim-
ilar responses while studying pH for As(V) adsorption onto kaolinite,
and maximum adsorption was also achieved at pH 5.0. Equilibrium
was reached within 3 h, and qmax value of 0.86 mg g−1 was found by
fitting the Langmuir equation to the adsorption isotherms (R2 =
0.98). The authors also observed an adverse effect of an increase in tem-
perature on As(V) adsorption; therefore, interactions are exothermic.
The electrokinetic behavior of kaolinite was modified in the pollutant's
presence, which can be concluded as inner-sphere surface complexa-
tion and strong specific ion adsorption (Mohapatra et al., 2007).

Chantawong et al. (2003) investigated the adsorption of Cd2+, Cr3+,
Cu2+, Ni2+, Pb2+, and Zn2+ by thai kaolinite. Except for Ni2+, adsorp-
tion increased as pH increased. Isotherms fit the Freundlich model,
with R2 ranging from 0.93 to 0.99, for each ion. Adsorption followed
the order: Cr> Zn>Cu≈ Cd≈ Pb>Ni, withmaximumremoval capac-
ity of 1.13 × 10−3, 1.07 × 10−3, 4.20 × 10−4, 6.22 × 10−4, 7.73 × 10−5,
and 5.11 × 10−5 mmol g−1, respectively (Chantawong et al., 2003). Liu
et al., 2016a focused on a wide range of individual Pb, Zn, and Cu con-
centrations, varying from 0.1 to 100 mM, at different pH conditions.
Again, the best results were obtained in basic pH. Also, the isotherms
fit the Freundlich and Langmuir models for kaolinite. The maximum re-
moval capacity for Cu was 1.82mg g−1, for Zn was 6.19 mg g−1, and Pb
was 14.47 mg g−1 (Liu et al., 2015). Also, Coles and Yong (2002) con-
ducted batch equilibrium tests on kaolinite suspensions adjusted to
pH 4 and pH 6, aiming to remove PbCl2 and CdCl2. Better results were
obtained at pH 6. Interestingly, by studying the equilibrium curves of
both metal retention versus suspension pH, combined with an analysis
of the speciation of the metals, it was evidenced that both divalent
(Pb2+ and Cd2+) and monovalent (PbCl+ and CdCl+) species were
adsorbed (Coles and Yong, 2002).

Ghosh and Bhattacharyya (2002) employed raw kaolinite obtained
froma local deposit focusing onmethylene blue adsorption. The rawad-
sorbent showed considerable adsorption, superior to the calcinated ver-
sion of the material. Experiments were conducted considering contact
time of 3 h, pH 10, initial methylene blue concentration of 15 mg L−1,
and adsorbent dosage of 0.8 g L−1. In this condition, raw kaolinite up-
take reached 13.99 mg g−1, and the isotherms fit well the Langmuir
model (Ghosh and Bhattacharyya, 2002). Doǧan et al. (2009) addressed
Maxilon Yellow 4GL and Maxilon Red GRL dyes kinetic adsorption. The
equilibrium was set after 150 min. The adsorption kinetics followed
pseudo-second-order for both dyes, with k2 values up to 107.87 × 104

g mol−1 min−1 for Maxilon Yellow and 72.09 × 104 g mol−1 min−1

for Maxilon Red (Doǧan et al., 2009). Despite kaolinite usual small sur-
face area, several studies have been published on its efficiency towards
dyes adsorption: aniline blue (Unuabonah et al., 2008a), basic fuchsin
(Khan et al., 2015), crystal violet (Çiftçi et al., 2017; Dobrogowska
et al., 1991; Khan et al., 2015; Sarma et al., 2019; Yariv et al., 1991),
solophenyl yellow GFL (Kamel et al., 1991), solophenyl red 6BL
(Kamel et al., 1991), diphenyl pink BF (Kamel et al., 1991), 9-
aminoacridine (Harris et al., 2001, 2006a–c), 3,6-diaminoacridine (Har-
ris et al., 2001, 2006a, 2006b, 2006c), azure A (Harris et al., 2001, 2006a,
2006b, 2006c), safranin O (Harris et al., 2001, 2006a, 2006b, 2006c), re-
active blue 221 (Karaoǧlu et al., 2010), basic red 5 (Alom et al., 2014),
rhodamine B (Batista et al., 2014; Khan et al., 2012; Rosales et al.,
2018), methylene blue (Ghosh and Bhattacharyya, 2002; Greathouse
et al., 2015;Hang andBrindley, 1970;Mukherjee et al., 2015),malachite
green (Castellini et al., 2008; Sarma et al., 2019), reactive red 120 (Abidi
et al., 2017), congo red (Bhattacharyya et al., 2015; Shaban et al., 2018),
and many others.

Moving on further than dyes, one study investigated their adsorp-
tion alongside to other 23 organic pollutants, such as acridine, 8-
amino quinoline, quinoline, and pyridine (Harris et al., 2001). Organic
pollutants are of great concern due to their ubiquitous occurrence,
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even in remote ecosystems (Lu andAstruc, 2020; Sun et al., 2020; Zhang
et al., 2003). Among them, pesticides are of great concern (Bache et al.,
1964; Sharma et al., 2020). Clausen et al. (2001) investigated atrazine
(6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine),
isoproturon ([3-(4-isopropyl phenyl)-(1,1-dimethylurea)]), mecoprop
((RS)-2-(4-chloro-2-methyl phenoxy)propionic acid), 2,4-D (2,4-
dichloro-phenoxy-acetic acid), and bentazone (3-isopropyl-1H-2,1,3-
benzothiadiazin-4-(3H)-one 2,2-dioxide) adsorption towards kaolin.
Specific surface area and mineral surface charge proved important fac-
tors: detectable adsorption of anionic pesticides was only measured
when positive sites were present on themineral surface. When an elec-
trolyte was added, detectable adsorption of mecoprop and 2,4-D was
also measured on kaolinite, probably due to the formation of surface
complexes. However, the adsorption of the uncharged pesticides, atra-
zine, and isoproturon, did not suffer interferences. Despite their efforts,
pesticides adsorb weakly to pure kaolin in aqueous solutions (Clausen
et al., 2001).

3.2. Montmorillonite

Montmorillonite is a clay mineral, whose molecular formula can be
described as (Na, Ca)0.33(Al, Mg)2(Si4O10)(OH)2(H2O)n, with substantial
isomorphic substitution. On behalf of adsorption, this mineral presents
peculiar characteristics, such as fast cationic exchange and interlaying
swelling (Bhattacharyya and Gupta, 2008). Cations such as Na+ and
Ca2+ tend to form surface complexes; therefore, they are easily ex-
changed with solute ions (Dähn et al., 2002). In its structure, interlayer
swelling occurs in aqueous media. This process depends on valences
and the atomic radius of the exchangeable cations (Hennig et al., 2002),
which leads to additional inner-sphere complexation and adsorption
(Elzinga and Sparks, 1999). Although there is a conflict in the literature
about whether bentonites are a sub-group of montmorillonites or simply
the same thing, this review article will approach both subjects together.
When it comes to writing reports on different knowledge areas, there is
a deficiency sometimes in standardizing terms, which can result in less
visibility for several relevant and well-performed studies, just because
the authors know a specific material by a name other than the usual
one, but that still is scientifically accepted (Malamis and Katsou, 2013).

Several studies report on montmorillonite adsorption towards metals
(Álvarez-Ayuso and García-Sánchez, 2003; Andini et al., 2006; Angove
et al., 1998; Bhattacharyya and Gupta, 2007a; Donat et al., 2005; Gupta
et al., 2003; Gupta and Bhattacharyya, 2006; Jain and Sharma, 2002;
Jobstmann and Singh, 2001; Kandah, 2004; Karapinar and Donat, 2009;
Liu and Jiang, 2010; López et al., 1998; Mathialagan and Viraraghavan,
2002; Putro et al., 2017; Ulmanu et al., 2003; Wasewar et al., 2010).
Gupta and Bhattacharyya (2006) reported the adsorption of Cd2+ onto
raw and modified montmorillonite. The removal efficiency reached
94.5% for raw montmorillonite, compared to 64.8%, 81.0%, and 99.3% for
ZrO/montmorillonite, tetrabutylammonium/montmorillonite and acid-
activated montmorillonite, respectively. This removal efficiency can be
translated as an adsorption capacity of 32.7mg g−1. Again, the adsorption
of Co2+ was only slightly superior onto acid activatated montmorillonite
in comparison to the rawmaterial, reaching 29.7 and 28.6 mg g−1 of ad-
sorption capacity (Bhattacharyya and Gupta, 2007b). Considering the
time, effort, and cost,modifiedmontmorillonite is not offset by rawmont-
morillonite efficiency (Gupta andBhattacharyya, 2006). In Table 4, several
studies on montmorillonite adsorption towards metals are summarized.

The adsorption of several dyes onto both natural and modified
montmorillonites has been studied over the years, such as methylene
blue (Benhouria et al., 2015; Feddal et al., 2014; Hong et al., 2009;
Kahr and Madsen, 1995; Wei et al., 2018; Zhang et al., 2019a), methyl
violet (Fabryanty et al., 2017; Guiza et al., 2012; Puri and Sumana,
2018; Zhang et al., 2019b), methyl orange (Chen et al., 2011a;
Leodopoulos et al., 2012; Zhang et al., 2019c), naphthol green (Zhang
et al., 2019e), direct red 23 (Mahvi and Dalvand, 2020), diamond fast
brown KE (El-Defrawy et al., 2019), reactive red 120 (Mahmoodi et al.,
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2019; Tabak et al., 2010) and acid fuchsin (Cao et al., 2017; Gong
et al., 2018). Data on dye adsorption can be summarized in results ob-
tained by Fil et al. (2014), who studied Red Violet 3RN color removal
in simulated wastewater using montmorillonite clay. They concluded
that the process efficiency rate increased with increasing pH, tempera-
ture, dye concentration, and agitation speed but decreased with in-
creased ionic strength and adsorbent dosage. Langmuir model better
represented the equilibrium data. Also, kinetics fit the pseudo-second-
order model (Fil et al., 2014).

Chang et al. (2015) investigated tetracycline adsorption, an antibi-
otic onto high-charge Ca-montmorillonite and low-charge Na-
montmorillonite. The adsorption data obeyed Langmuir isotherm,
with maximum pollutant adsorption of 468 and 404mg g−1 on Ca and
Na montmorillonites, respectively. The adsorption was endothermic,
suggesting strong physical adsorption, which is expected for organic
molecules adsorbents with high surface area and a small pore size ratio
(Chang et al., 2015). Also, concerning natural montmorillonite, Thiebault
and Boussafir (2019) explored the adsorption of the psychoactive drugs
codeine, diazepam, and oxazepam onto Na-montmorillonite. At pH =
7.5, codeine cation exchange resulted in the highest amount adsorbed
among the tests (qmax = 0.381 mmol g−1). Therefore, their significant
contributionwas proving that variation in pH strongly impacts the pollut-
ant and sorbent affinity (Thiebault and Boussafir, 2019). Also, studies re-
port atenolol (Chang et al., 2019) and nortriptyline (Sadri et al., 2018) in
raw Ca-montmorillonite, while 4-acetaminophenol (Chu et al., 2019),
amoxicillin, and diclofenac (Khan et al., 2020) removal were reported
for modified montmorillonite.

At last, pesticides adsorption onto montmorillonite was reported
and verified as well, demonstrating that it acts as a natural scavenger
of pesticides due to the abundant availability, large specific surface
area, and high adsorptive and ion exchange properties (Bhardwaj
et al., 2014; Cabrera et al., 2008; Kovacevic et al., 2011; Ozcan et al.,
2012; Park et al., 2014; Suciu and Capri, 2009). Carbaryl, aldrin, mala-
thion, 2,4-D, and dimethoate adsorption capacity onto rawmontmoril-
lonite were 3.70, 14.96, 7.95mg g−1 and 0.90, 0.96 μg kg−1, respectively
(Al Kuisi, 2002; Chen et al., 2009; Ozcan et al., 2012; Pal and Vanjara,
2001; Park et al., 2019); 8-quinoline carboxylic acid adsorption capacity
onto Na-, acidic- and organo-montmorillonite was 65.4. 67.6 and
75.9 mg g−1 (Mekhloufi et al., 2013); Na- and Ca-montmorillonite ad-
sorption capacity towards phosmet reached 1.04 × 10−3 and 1.648 ×
10−3 mg g−1 (Sánchez Camazano and Sánchez Martín, 1983), while
K-, Na- and Ca-montmorillonite towards phosdrin reached 1.882 ×
10−3, 3.548 × 10−3 and 2.150 × 10−3 mg g−1 (Sánchez Camazano
and Sánchez Martín, 1983).

3.3. Illite

The term illite was proposed by (Grim et al., 1937) as a general term,
not as a specific claymineral name, to designate mica-like clay minerals
of Illinois. Since then, the illite definition was progressively improved
(Meunier and Velde, 2010). Thus, Illite is understood as a group of
closely related non-expanding phyllosilicate. Its chemical formula is
given as (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)], with consider-
able ion substitution (Meunier et al., 2004; Meunier and Velde, 2010).
In addition to the surface hydrogen bonds, illite cleavage releases potas-
sium ions,which results in the surface of high-density ionic bonds. Thus,
cleaved illite surfaces are moderately hydrophilic (Park et al., 2019;
Zhang et al., 2018).

Picloram, a herbicide adsorbed on illite, was studied under pH
variation. Batch tests were performed with an adsorbent dosage
of 16 g L−1 and pollutant concentrations ranging from 0.2 to
5.0 mmolL−1. The adsorption isotherms well-fit both Langmuir and
Freundlich models, with qmax values of 14 ± 2, 12 ± 3, and 11 ± 1
μmol g−1 at pH 3, 5, and 7, respectively (Marco-Brown et al., 2019).
The piclorammolecule interactionswith illite surfaces exhibited anionic
profile adsorption,with a decrease in adsorptionwhen thepH increases,



Table 4
Different montmorillonites adsorption response on metal ions removal efficiency.

Type Dosage Pollutant – C0 qmax Reference

(g L−1) (mg g−1)

Acid-activated 2 Cu2+

10–250 mg L−1
32.3 Bhattacharyya and Gupta, 2011

2 Ni2+

10–250 mg L−1
29.5 Bhattacharyya & Gupta, 2008

Calcareous 1 Cu2+

10–100 mg L−1
12.97 Sdiri et al., 2012

Calcium 20 Cu2+

13–160 mg L−1
12.633 Wu et al., 2011

Ilite system 3 Pb2+

100 mg L−1
54.12 Oubagaranadin et al., 2010

17 Cu2+

10–150 mg L−1
30.99 Oubagaranadin and Murthy, 2010

K10 16 Ni2+

10–2000 mg L−1
2.10 Carvalho et al., 2008

Raw 2 Cu2+

10–250 mg L−1
31.8 Bhattacharyya and Gupta, 2011

1 Cu2+

10–100 mg L−1
17.89 Sdiri et al., 2011

2 Fe3+

10–250 mg L−1
28.9 Bhattacharyya and Gupta, 2008

2.5 Pb2+

150 mg L−1
57.0 Zhang and Hou, 2008

2 Ni2+

10–250 mg L−1
28.4 Bhattacharyya and Gupta, 2008

Tetrabutylammonium 1 Fe3+, Co2+, Ni2+

50 mg L−1
22.6 Bhattacharyya and Sen Gupta, 2009

2 Fe3+

10–250 mg L−1
19.7 Bhattacharyya and Gupta, 2008b

ZrO 2 Fe3+, Co2+, Ni2+

50 mg L−1
23.8 Bhattacharyya and Gupta, 2008c
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which is very interesting, considering that the illite point of zero-charge
is around 2.8 (Marco-Brown et al., 2019; Park et al., 2019). Tetracycline
is a semi-synthetic antibiotic commonly detected in soils due to animal-
produced slurry applications as fertilizer (Agersø et al., 2006). Chang
et al. (2012) reported illite adsorption capacity towards tetracycline ad-
sorption at 32 mg g−1, at pH 5–6. Adsorption equilibrium data obeyed
the Freundlich isotherm model. Therefore, considering the qmax value
reported in this study, illite may act as an essential environmental de-
posit on fate, routes, and transportation of antibiotics in soils (Chang
et al., 2012). Although the studies discussed above, as well as the
study carried out by (Fil et al., 2016) regarding methyl violet dye,
point to non-linear adsorption models, it has also been reported that
for larger molecules, such as microcystin-LR, the application of linear
isotherms might be proven more suitable (Liu et al., 2019).

Ionic adsorption onto illite has been inspected as well. For example,
uranium sorption characteristics tend to be dominated by chemical ion-
exchange, an endothermic and spontaneous process that increases en-
tropy (Liao et al., 2020). Fernandes and Baeyens (2019) modeled lead
adsorption considering two sites protolysis non-electrostatic surface
complexation and cation exchange, and reported maximal uptake
values 4.0 × 10−2 to 2.0 × 10−3 mol kg−1 (Fernandes and Baeyens,
2019). Moreover, investigations on copper and nickel adsorption on il-
lite/smectite systems were reported by (Du et al., 1997),
Rosskopfová's et al. (2016), and Viglašová et al. (2017). In addition to il-
lite ionic adsorption, thallium and strontium adsorption have been in-
vestigated as well, but will not be explored in this review for our
scope is environmental remediation, and such metals are not yet con-
sidered environmental relevant contaminants (Galamboš et al., 2013;
Wick et al., 2018; Zhang et al., 2016).

4. Zeolites

Zeolites of natural origin are formed due to volcanic activity, either by
water or deposition of volcanic dust in saline deposits (Delkash et al.,
2015; Malamis and Katsou, 2013). They are complex, microporous
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inorganic polymers formed by an infinitely extensive three-dimensional
structure of silicon and aluminum tetrahedrons linked together by shar-
ing oxygen (Hong et al., 2019; Niu et al., 2020). The most commonly
found natural types are mordenite, chabazite, and clinoptilolite
(Dehghan andAnbia, 2017; Flanigen, 1991). The zeolite crystal structure's
inner cavities are generally in the range of 0.5–1.2 nm, a factor deter-
mined by formation route anddifferent Si/Al ratios. This Si/Al ratio acts di-
rectly on the thermal resistance of zeolites and cation exchange
properties: low-silica zeolites with Si/Al ratio below 2 have excellent ion
exchange capacity; however, the higher the aluminum content, the less
stable tends to be the zeolite (Jiang et al., 2018; Wen et al., 2018). Unlike
geopolymers, zeolites, despite having the same constitution, are highly
crystalline materials with higher thermal and chemical resistance. An-
other difference is that zeolites need a higher amount of water present
in their formation reaction medium. The synthesis reactions take longer
than that of the geopolymers, much due to the crystallization stage
(Fernández-Jiménez et al., 2005).

Jafari-zare and Habibi-yangjeh (2010) studied the adsorption of rho-
damine B and methylene blue in both single and binary component sys-
tems, using natural zeolite formed predominantly by clinoptilolite. The
experiments were carried out at pH 12, with an adsorbent dosage of
0.2 g L−1 and initial dye concentration of 6 × 10−6 mol L−1. Results
showed that the maximum capacity of clinoptilolite for the dyes methy-
lene blue and rhodamine B in a single system was 7.95 × 10−5 and 1.26
× 10−5, respectively, with both isotherms being better described by the
Langmuir model, with determination coefficients (R2) greater than
0.991. A reduction in the adsorption capacity of both dyes was verified
in thebinary systemdue to the competitionof themolecules for the active
sites available in the adsorbent; thus, the qmax value for rhodamine Bwas
2.2 × 10−6 mol g−1, while for methylene blue was 7.44 × 10−5 mol g−1,
fitted again by Langmuir model (R2 of 0.984 for the rhodamine B and
0.997 for the methylene blue) (Jafari-zare and Habibi-yangjeh, 2010).

Natural zeolites can also be used as adsorbents to remove pharma-
ceuticals in an aqueous solution. de Sousa et al. (2018) removed
azithromycin, ofloxacin, and sulfamethoxazole using faujasite zeolites
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with different Si/Al ratios. The zeolite FAU-1 had a Si/Al ratio of 30 and a
surface area of 914 m2 g-1, while the FAU-2 had a Si/Al ratio of 82 and a
surface area of 899 m2 g−1. The adsorption tests were carried out with
initial concentrations of antibiotics ranging from 10 to 400 μg L−1, for
360 min, with a solution volume of 30 mL. The results showed that
the FAU-1 zeolite, with greater surface area, showed greater adsorption
capacity for both antibiotics, within the range of 8.5 mg g−1 for
azithromycin to 31.32mg g−1 for ofloxacin. A study simulating an efflu-
ent containing the three antibiotics, under conditions of pH 7.25, an ad-
sorbent dosage of 10mg L−1, a contact time of 2 h, initial concentration
of azithromycin, ofloxacin, and sulfamethoxazole of 391, 378, and
78.6 ng L−1, respectively, showed that zeolite FAU-1 responds well
against the treatment of effluents contaminated with pharmaceuticals,
removing up to 60% of azithromycin, 76% ofloxacin and 44% of sulfa-
methoxazole (de Sousa et al., 2018).

Due to zeolite's tetrahedral aluminum structure, a negative surface
charge is created in themineral network structure. The presence of cat-
ions can counterbalance this charge, usually, Ca2+, Na+ and K+, located
in the cavities; therefore, these cations are exchangeablewith other cat-
ions, including environmental pollutant metals ions (Malamis and
Katsou, 2013; Sprynskyy et al., 2006). For further understanding, the
works on Ag+, Cd2+, Co2+, Cr3+, Cr6+, Cu2+, Fe3+, Mn2+, Ni2+, Pb2+,
and Zn2+ adsorption are summarized in Table 5, displaying the most
important topics and specifications of each research (Akgül et al.,
2006; Álvarez-Ayuso et al., 2003; Álvarez-Ayuso and García-Sánchez,
2003; Baker et al., 2009; Bhattacharyya and Gupta, 2007a; Erdem
et al., 2004; Ijagbemi et al., 2009; Malamis and Katsou, 2013; Minceva
et al., 2008; Motsi et al., 2009; Ören and Kaya, 2006; Ren et al., 2016a;
Sari and Tüzen, 2013; Sen Gupta and Bhattacharyya, 2008; Sheta et al.,
2003; Sprynskyy et al., 2006; Yakout and Borai, 2014).

5. Geopolymers

Geopolymers are amorphous or semi-crystalline materials formed
from polymerization reactions between geological originated materials
containing aluminum and silicon, such as clays and fly ash, and an acti-
vating agent, usually strong bases as sodium or potassium hydroxide
(Alouani et al., 2018; Bagci et al., 2017). Initially, geopolymers were
Table 5
Specifications of studies on Ag+, Cd2+, Co2+, Cr3+, Cr6+, Cu2+, Fe3+, Mn2+, Ni2+, Pb2+, and Zn

Material Surface area Metal Adsorbent dosage Initial concentration p

(m2 g−1) (g L−1) (mg L−1)

Chabazite 1100 Zn2+ 20 6
73.61 Cd2+ 2 50 5
– Co2+ 5 30 5

Cu2+

17.83 Pb2+ 10 500 6
Zn2+

Cd2+ 7
– Mn2+ 20 400 7
20.3 Cd2+ 10 200 6

Cu2+ 5
Cr3+ 4

15.88 Fe3+ 37 400 3
Cu2+ 3

16.76 Ag+ 2 150 4
Clinoptilolite/quartz 15.78 Pb2+ 12 80 4

Cr(VI) 25
Gordes zeolite – Zn2+ 1 20 4

Cd2+ 5
Ni2+ 5

Philipsite 961 Zn2+ 20 500 6
Vermiculite 14.6 Ni2+ 2.5 100 6

0.84 Ag+ 20 400 4
Zeolite – Zn2+ 5 20 6

– Pb2+
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used as additives to Portland cement because they improved their
mechanical properties and durability since geopolymers are highly re-
sistant to acid attacks and are resistant to frost/defrost cycles and fire-
resistant (Atiş et al., 2015; Komnitsas, 2011).

The large OH− ion concentration in the reaction medium of
geopolymer preparation is responsible for the amorphous three-
dimensional network's dissolution, commonly found in the startingma-
terials (Khale and Chaudhary, 2007). Inmore detail, the activating agent
breakdown the solid aluminosilicate by repulsion caused by the strong
base cations (Na+ or K+). Inmonomers, Al is tetrahedrally coordinated,
and polycondensation reactions follow, forming a network composed of
SiO4 and AlO4 tetrahedrons linked together by oxygen atoms. In this
network, the alkali agent cation acts as a charge compensator in the
geopolymer structure, enhancing adsorption possibilities (Duxson
et al., 2007; Rahier et al., 2007). Studies involving the use of
geopolymers as adsorbents for environmental remediation purposes,
despite recent, are widely disseminated in literature, as presented in
Table 6, and mainly focus on the removal of dyes molecules of aqueous
solutions (Acisli et al., 2020; Alouani et al., 2018; Barbosa et al., 2018;
Hua et al., 2020; Li et al., 2006; Rossatto et al., 2020; Schadeck Netto
et al., 2019; Siyal et al., 2018) and towards metal ions (Al-Zboon et al.,
2011; Chen et al., 2019; Cheng et al., 2012a; Kara et al., 2017; Liu et al.,
2016c; Naghsh and Shams, 2017).

Barbosa et al. (2018) prepared a geopolymer using calcined kaolinite
and rice husk ash as precursor materials and tested it versus methyl vi-
olet dye adsorption from aqueous solutions. The 62m2 g−1 surface area
as-synthesized geopolymer showed a qmax capacity of 277 mg g−1, at
pH 4.5, at a temperature of 328 K, and an adsorbent dosage of 1.5 g
L−1. Isotherms were better described by the Sips model, with R2 of
0.995, 0.989, 0.993, and 0.996 for the respective temperatures of 298,
308, 318, and 328 K (Barbosa et al., 2018). The endothermic character,
which guarantees an improvement in the adsorption capacity by
greater exposure of the geopolymer's active sites, was also reported by
Alouani et al. (2018). They synthesized a geopolymer from fly ash
from a thermoelectric plant for the adsorption of crystal violet dye.
After 120min, pH 5, and adsorbent dosage of 1 g L−1, themaximum ad-
sorption capacity of 37 mg g−1 was found, with the Langmuir model
best describing the adsorption isotherms, with R2= 0.999, much higher
2+ adsorption by different zeolites.

H Temperature Adsorption capacity Reference

(K) (mg g−1)

.0 293 7.98 Sheta et al. (2003)

.5 298 120 Yakout and Borai (2014)

.0 298 1.50 Ouki and Kavannagh (1997)
3.80

.0 318 22.88 Minceva et al. (2008)
4.17

.0 5.46

.0 303 4.22 Erdem et al. (2004)

.0 295 4.60 Álvarez-Ayuso et al. (2003)

.0 5.91

.0 4.12

.5 295 6.61 Motsi et al. (2009)

.5 3.37

.0 298 33.23 Akgül et al. (2006)

.0 308 10.00 Ren et al. (2016a)
0.34

.0 298 6.00 Ören and Kaya (2006)

.5 30.7

.7 21.1

.0 293 1.70 Sheta et al. (2003)

.0 295 19.3 Álvarez-Ayuso and García-Sánchez (2003)

.0 293 46.2 Sari and Tüzen (2013)

.0 300 62.9 Baker et al. (2009)
56.82



Table 6
Summarization of recent studies involving geopolymers as adsorbents for environmental remediation purposes.

Adsorbent Adsorbate Surface area qmax Reference

(m2 g−1) (mg g−1)

Fly ash Methylene blue – 37.04 Alouani et al., 2018
Pb2+ 20.48 118.6 Liu, Huang, et al., 2016
Cd2+ 130.45 26.246 Javadian et al., 2015
Cs+ 114.16 15.24 Lee et al., 2016

Linz Donawitz converted slag Ni2+ 30.84 85.29
Mesoporous Methyl violet 62 276.9 Barbosa et al., 2018
Metakaolin Methyl Orange 35.66 0.339 Fumba et al., 2014

NH4
+ 22.4 21.07 Luukkonen et al., 2016

NH4
+ 19.3 19.7

Zn2+ 39.24 74.53 Kara et al., 2017
Ni2+ 39.24 42.61 Kara et al., 2017
Cd2+ 65.7 75.74 Cheng et al., 2012
Co2+ 39.24 69.23
Mn2+ 39.24 72.34

Metakaolin spheres Cu2+ 53.95 52.63
Pb2+ 100.99 629.21

Mn-CuO/Graphene bottom ash Direct sky blue 18.45 0.497
Modified metakaolin Cu2+ 216 40 Singhal et al., 2017
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if compared to the fit of Freundlich (R2 = 0.694), Temkin (R2 = 0.866)
and Dubinin-Radushkevich (R2 = 0.555) models (Alouani et al., 2018).

The addition and impregnation of magnetic agents, such as magne-
tite or zero-valent iron, was presented as a viable and innovative alter-
native to facilitate the separation of the adsorbent from the aqueous
medium (Schadeck Netto et al., 2019; Hua et al., 2020); Rossatto et al.
(2020) synthesized amagnetic geopolymer using silica, calcined kaolin-
ite, sodium hydroxide, and magnetite to adsorb acid green 16 dye. The
53m2 g−1 surface areamagnetic geopolymer presented amaximumad-
sorption capacity of 400mg g−1 of dye at 328 K, at pH 2.3, and an adsor-
bent dosage of 0.75 g L−1, with best adsorption isotherms described by
the BET model with values of R2 from 0.96 to 298 K and 0.97 to 328 K
(Rossatto et al., 2020).

El-eswed et al. (2012) studied the adsorption of Cu2+, Ni2+, Zn2+,
Cd2+, and Pb2+ ions in kaolinite/zeolite-based-geopolymers; under
pH 4, adsorbent dosage of 1 g L−1, 298 K, and contact time of 24 h. It
was concluded that the adsorption is preferred against small
metal ions, such as Cu2+, Ni2+, Zn2+, concerning the larger ones, such
as Cd2+ and Pb2+. The values of the maximum adsorption capacities
found by the Langmuir model's application varied from 0.6 mmol g−1

for Cu2+ to 0.1mmol g−1 of Cd2+. Besides, in ionic competition systems,
the adsorption of Cu2+ and Pb2+ in geopolymers did not decrease, indi-
cating cooperative adsorption, which is very interesting from possible
interferences in the adsorption of the targeted pollutants (El-eswed
et al., 2012).

6. Modified materials and composites

Thisfinal section presents anoverviewof themost relevant topics on
modified geological originatedmaterials. This straightforward approach
was chosen to illuminate future perspectives while still focusing on nat-
ural and raw forms of application. Nevertheless, there aremanyways of
modifying geological originated materials aspiring to increase in ad-
sorption capacity compared to the raw mineral.

Although in several studies previously discussed, the qmax values re-
ported were adequate for untreated materials, many other comparative
studies have shown that modifications, such as metal impregnation, or
treatments, such as thermal or acid-base activation, can critically en-
hance adsorption capacity (Bhattacharyya et al., 2015; Bhattacharyya
and Gupta, 2008; Bhattacharyya and Sen Gupta, 2009; Carvalho et al.,
2008; Kausar et al., 2018; Martín et al., 2019; Obayomi et al., 2020;
Park et al., 2014; Sen Gupta and Bhattacharyya, 2014; Singhal et al.,
9

2017; Suciu and Capri, 2009; Unuabonah et al., 2008a,b; Wu et al.,
2011). Even simple pre-treatments can extract soluble organic com-
pounds and enhance chelating efficiency (Gaballah et al., 1997).Modifi-
cations methods comprise various kinds of modifying agents: bases,
such as sodium hydroxide, calcium hydroxide, and sodium carbonate;
mineral and organic acid solutions, such as hydrochloric acid, nitric
acid, sulfuric acid, tartaric acid, citric acid, and thioglycolic acid, organic
compounds, such as ethylenediamine, formaldehyde, epichlorohydrin,
and methanol, and even oxidizing agents, such as hydrogen peroxide
(Wan Ngah and Hanafiah, 2008).

6.1. Metal ions

Aiming U(VI) adsorption, Li et al. (2014) prepared thermally acti-
vated sodium by calcinating micron Na-feldspar at 450 °C for 45 min,
which resulted in amaterialwith a larger specific surface area and larger
porosity than the original. The prepared material presented maximum
adsorption efficiency of 0.5 mg L−1 of U6+, the equivalent to 95.49%,
at pH 5.0, 318 K, and contact time of 600min. The relationship between
qmax and equilibrium concentration, Ce, was well described by the
Freundlichmodel (Li et al., 2014). Ahmad andMirza (2017) synthesized
a novel ecofriendly alginate/Au/mica bio nanocomposite with remark-
able environmental remediation capacity of Pb2+ and Cu2+ in a single
and binary system. The bionanocomposite adsorption experiments
data best fit the Freundlich isotherm model for Pb2+, whereas for
Cu2+ Langmuir isotherm model was more suitable, both single and bi-
nary systems, with a maximum adsorption capacity of 224.97
and 169.817 mg g−1, respectively. Adsorption process was found to
be endothermic and spontaneous, thus, the nanocomposite can be ap-
plied successfully to industrial wastewaters.

Hematite and ilmenite modified composites have been studied and
proposed by several authors (Chen et al., 2017; Kang et al., 2018; Lee
et al., 2013a; Ma et al., 2018; Sengupta et al., 2017; Shu et al., 2019;
Waanders et al., 2016; Wang et al., 2019a; Xu et al., 2017, 2018;
Yousef, 2017). Sengupta et al. (2017) prepared amesoporous composite
consisting of hematite micro sheets modified and decorated with te-
tragonal zirconia nanocrystallites, useful for adsorbing cationic pollut-
ants from water, by a simple hydrothermal method. It exhibited
improved adsorption behavior of variousmetal ions, with about 99% re-
moval efficiency reached for Cu2+, Cd2+, and Pb2+ at an initial concen-
tration ranging from 5 to 20 mg L−1, in comparison to unmodified
zirconia and hematite. Wang et al., 2019b synthesized using ilmenite
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and NaOH as starting materials a nanosized titanate composite by the
solid-state route. After calcination at 900 °C, the finalmolecular formula
of the composite was reached: Na0.79–0.82Fe0.96–0.98Mg0.07–0.08TiO3.85–

3.88. The adsorption of Cu2+, Cd2+, and Pb2+ ions fit pseudo-second-
order adsorption kinetics and the Langmuir adsorption model. At
20 °C, the maximum adsorption capacities of the as-synthesized nano-
composite for Cu2+, Cd2+, and Pb2+were 13.8, 8.8, and 20.3mg g−1, re-
spectively. The thermodynamic parameters also revealed that these
ions' adsorption was spontaneous and endothermic (Wang et al.,
2019b). Interestingly, on the contrary to hematite and ilmenite, magne-
tite is usually used to cover other adsorbents to increase their magneti-
zation capacity and adsorption (Amaria et al., 2017; Chiou et al., 2017;
Çiftçi et al., 2017;Malik et al., 2020; Tahergorabi et al., 2016; Talebzadeh
et al., 2017). It has also been applied as the lead material for adsorption
purposes, as by Mahdavian and Mirrahimi (2010). They proposed an-
choring polyacrylic acid on superparamagneticmagnetite nanoparticles
through surfacemodification for efficient separation of heavymetal cat-
ions from aqueous solutions. Four cations were studied: Cu2+, Pb2+,
Ni2+, and Cd2+. For the prepared cation solutions at the constant ther-
mal, time, and pH conditions, the maximum adsorption capacity was
found to be for Pb2+ (40 ± 0.55 mg g−1), and the minimum was for
Cd2+ (7 ± 0.6 mg g−1) (Mahdavian and Mirrahimi, 2010).

Adsorption of As(V) onto activated siderite was reported by Zhao
and Guo (2014), with qmax values reaching 2.19 mg g−1 estimated
from Langmuir isotherm at 25 °C (Zhao and Guo, 2014). Calcite modifi-
cations resulted in novel porous bentonite and calcite-biochar compos-
ite, used for lead adsorption, among other studies (Markovski et al.,
2014b; Mohammadi and Sedighi, 2013; Ramola et al., 2020). Under op-
timized conditions, 0.07 g of the adsorbent composite effectively re-
moved 97.06% of 232 mg L−1 after 3.5 h at pH of 5.5, and the
maximum adsorption capacity reported was 500 mg g−1 (Ramola
et al., 2020). Suzuki et al. (2004) investigated the construction of a uni-
form three-dimensional network porous structure of CaZrO3/MgO com-
posites, synthesized using reactive sintering of highly pure mixtures of
natural dolomite (CaMg(CO3)2) and synthesized zirconia powders,
with LiF(aq) additive. The pore-size distribution was set at around 1
μm, and the porosity was controllable (about 30% to 50%) through dif-
ferent sintering temperatures (Suzuki et al., 2004). Porosity is a critical
factor, and Stefaniak et al. (2002) reported as well on the influence of
preparation conditions on adsorption properties and porosity of
dolomite-based sorbents. The thermal decomposition of carbonates
has a dominant role in creating a new solid phase: as temperature in-
creases over 800 °C, the porosity decreases (Stefaniak et al., 2002).
This controlled tailoring form has been investigated towards phosphate
adsorption on Al/dolomite/montmorillonite composite (Gao et al.,
2013) and dolomite–alginate composite beads (Huang et al., 2019), to-
wards Cr6+ onto thermally treated dolomite and Pb2+ onto chitosan-
dolomite composite beads (Şenol and Şimşek, 2020).

Without a doubt, modified clays are the most explored geological
materials, according to how much data on the subject has been pub-
lished compared to previously presented minerals (Uddin, 2017). The
modified forms of kaolinite provided excellent results in reported stud-
ies. The adsorption of Pb2+ onto tripolyphosphate-modified kaolinite
clay (Unuabonah and Adebowale, 2009) and 25% (w/w) aluminum sul-
fate modified kaolinite clay (Jiang et al., 2009) were investigated. In the
first study, the mechanism suggested that adsorption possibly took
place at the negatively charged sites. Thus, thepresence of Penta sodium
tripolyphosphate adsorbed onto the kaolinite claymay contribute to en-
hancing the adsorption capacity of the proposed adsorbent (Unuabonah
and Adebowale, 2009). In the second report, the maximum adsorption
capacity of Pb2+ adsorption onto the modified kaolinite was 20 mg
g−1, about 4.5 times higher than the amount adsorbed onto unmodified
kaolin, of 4.2 mg g−1, under the optimized conditions (Jiang et al.,
2009). Moreover, aiming to remove Pb2+, Zn2+, and Cd2+, sodium
polyphosphate (SPP) modified kaolinite clay was synthesized and
evaluated, indicating that increase in temperature was the dominant
10
parameter for increasing adsorption capacity (Amer et al., 2010).
Nano-magnetite/kaolinite composite with kaolinite were produced
and tested against Cu, Pb, Cd, Cr and Ni ions adsorption. The magnetic
composite capacity increased over time and over increased pH
(Lasheen et al., 2016).

Modified forms of montmorillonite clays have been studied and ap-
plied to the adsorption of Cu, Pb, Hg, Cd, Cs, Zn, Fe, Co, Ni, Sr, As, Cr, Fe,
and even Pu (Abou-El-Sherbini and Hassanien, 2010; Begg et al., 2013;
Bhattacharyya and Sen Gupta, 2009; Cruz-Guzmán et al., 2006;
Goncharuk et al., 2010; Karamanis and Assimakopoulos, 2007; Liu
et al., 2016a; Ma et al., 2015; Na et al., 2010; Oubagaranadin et al.,
2010; Park et al., 2012; Sen Gupta and Bhattacharyya, 2009; Soltermann
et al., 2013; Vinuth et al., 2015; Xu et al., 2008; Yu et al., 2008, 2009;
Pereira et al., 2013). Organically modified montmorillonite clay was
used to remove Cu2+, qmax = 62.5 μg g−1 (Abou-El-Sherbini and
Hassanien, 2010). Montmorillonites modified with natural organic cat-
ions were synthesized and tested for the adsorption of Pb2+ and Hg2+

by Cruz-Guzmán et al. (2006). Carbon modified aluminum-pillared
montmorillonite has shown good uptake of Cd2+ from an aqueous sys-
tem, qmax=161.75 g g−1 (Yu et al., 2008). Al-13 pillaredmontmorillon-
ites were also prepared with different Al to clay ratios to remove Cd2+

and PO4
3− from aqueous solution (Ma et al., 2015). Aluminum-

pillared-layered montmorillonites also proved their potential as a sor-
bent in removing Cu2+ and Cs+ from aqueous solutions (Karamanis
and Assimakopoulos, 2007). Acid-activated montmorillonite-illite was
examined for removing Cu2+ and Zn2+ from industrialwastewater con-
taining Pb2+ at low concentration (Oubagaranadin et al., 2010). Cal-
cined tetrabutylammonium bromide modified montmorillonite was
prepared and used for the adsorption of Fe3+, Co2+, and Ni2+ from
aqueous solution (Bhattacharyya and Sen Gupta, 2009).

The reports on montmorillonites modifications also include thermal
(Aytas et al., 2009; Zuo et al., 2017), acid/base chemical treatment
(Akpomie and Dawodu, 2016; Shawabkeh et al., 2007), polycyclic-
aromatic hydrocarbon (Biswas et al., 2016), phosphate (Park et al.,
2012), polyethyleneimine (Goncharuk et al., 2010), Ti-pillared (Na
et al., 2010), chitosan-beads (Arvand and Pakseresht, 2013; Liu et al.,
2015; Pereira et al., 2013), cyestein (El Adraa et al., 2017; Stathi et al.,
2007), goethite (Olu-Owolabi et al., 2010), alkyl benzene sulfonate
(Sandy Maramis et al., 2012), 3-aminopropyltrietoxisilane (Guerra
et al., 2013) and 3,2-aminoethylamino-propyl-trimetoxisilane (Guerra
et al., 2013), manganese oxide (Eren and Afsin, 2008), amine and car-
boxylate (Anirudhan et al., 2012), aluminum pillaring (Arfaoui et al.,
2008), thermal-hydro-mechanical (Lee et al., 2013b), magnesium fer-
rite nanoparticles (Kaur et al., 2015) and humic acid (Wu et al., 2011).

Zeolites modifications can be separated into two larger groups: or-
ganic and inorganic treatments. For the first group, reports include
hexadecyltrimethylammonium bromide-modified NaY zeolite for both
cationic and oxyanionic metal ions (Chao and Chen, 2012), amine-
modified zeolite for Pb and Cd ions adsorption (Wingenfelder et al.,
2005), surfactant-modified natural zeolites for As5+ adsorption
(Chutia et al., 2009), thiourea modified synthetic zeolite X and its ad-
sorption of Cd2+ (Zhang et al., 2019a), cetylpyridinium bromide modi-
fied zeolite for Hg ion adsorption (Liu et al., 2016b), ethylenediamine
and monoethanolamine modified synthesized β-zeolite for adsorption
of Pb2+ (Motlagh Bahadory Esfahani and Faghihian, 2014),
hexadecylpyridinium bromide modified zeolite for Cr6+ adsorption
(Zeng et al., 2010), surfactant modified zeolite for the selective adsorp-
tion of Pb2+ and Cr6+ (Ren et al., 2016b) and Cu2+ (Zhan et al., 2013),
dithizone-immobilized zeolite for Hg2+ adsorption (Mudasir et al.,
2016), poly(methacrylic acid)/iron-oxide-coated zeolite for removal of
Mn2+, Fe2+ and As3+ (Pak et al., 2018), humic acid-immobilized
surfactant-modified zeolite for the adsorption of Cu2+ (Lin et al.,
2011), and polyacrylamide-zeolite composite modified by phytic acid
for the adsorption of UO2

2+, Tl+, Pb2+, Ra2+, Bi3+ and Ac3+ (Şimşek
and Ulusoy, 2004). The inorganic modifications comprehend mostly
changes and procedures of coating, layering, or supporting metals on
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zeolites, aiming to improve some specific adsorption sites towards con-
taminants removal (Alswat et al., 2016; Jiménez-Cedillo et al., 2011;
Kazansky and Pidko, 2005; Luo et al., 2019; Medina-Ramirez et al.,
2019; Onyango et al., 2003; Pahlavanzadeh and Motamedi, 2020; Qiu
et al., 2018; Salam et al., 2020; Simsek et al., 2013; Venkata Ramana
et al., 2013; Zhang et al., 2019f).
6.2. Organic molecules

6.2.1. Dyes
Yazdani et al. (2014) synthesized chitosan/feldspar bio-based

beads and tested for the removal of Acid Black 1 dye from aquatic
phases in 31 different batch experiments. The results showed uptake
of 19.85 mg g−1 under the optimum conditions of pH 3, the temper-
ature at 15 °C, initial dye concentration of 125 mg L−1, and an adsor-
bent dosage of 2 g L−1, which was very close to the predicted
maximum adsorption amount by the statistical model of
21.63 mg g−1. The mathematical modeling on the dyes' adsorption
behavior illustrated that the process followed Langmuir isotherm,
as well as pseudo-second-order kinetics. Langmuir's maximum sorp-
tion capacity was found to be 17.86 mg g−1. The thermodynamic pa-
rameters were evaluated and revealed that the adsorption process
was exothermic and favorable (Yazdani et al., 2014).

Saiphaneendra et al. (2017) used hematite and magnetite
nanoparticles to functionalize reduced graphene oxide sheets via a fac-
ile one-step co-precipitation technique. It has been postulated that both
minerals' co-existence on the graphene sheet causes synergistic effects
to enhance adsorption. For comparison purposes, the authors studied
the adsorption behavior of pure graphene oxide, reduced graphene
oxide, reduced graphene oxide/hematite composite (surface area =
230 m2 g−1), reduced graphene oxide/magnetite composite (surface
area = 231 m2 g−1), and reduced graphene oxide/magnetite/hematite
composite (surface area=216m2 g−1) againstmethylene blue adsorp-
tion. The adsorption kinetics was well described by the pseudo-second-
ordermodel, and Langmuir adsorption isotherm for the equilibrium ad-
sorption behavior of rGO-Fe2O3-Fe3O4. The maximum adsorption ca-
pacity was determined to be 72.8 ± 2.7 mg g−1 (Saiphaneendra et al.,
2017). Kang et al. (2018) provided a novel approach to “waste elimi-
nates waste” by employing ilmenite's acid leachate as the precursor in
its structure tailoring. They reported that the final product's morphol-
ogy and structure could be controlled, originating from nanoparticles,
microcubes, rhombohedrons to the microsphere, by merely varying
synthetic parameters. Due to its large surface area (152.3 m2 g−1) and
large functional groups, Fe2O3microspheres efficiently removed organic
dyes from aqueous solutions. The maximum adsorption capacities ob-
tained by Sips model (R2 = 0.9820) fit were 723.8, 150.7, and 54.5 mg
g−1 for Congo red, Methyl orange, and Methylene blue, respectively,
with 0.3 g L−1 of adsorbent, at pH of 7.2 ± 0.1 and at 25 °C (Kang
et al., 2018).

Thermally treated, modified, and calcined dolomites have been used
for dye adsorption. In 2010, Dolomite was thermally treated at 1000 °C,
going from a surface area of 1.82 to 11.36 m2 g−1. The batch adsorption
experiments were performed at 25 °C, 0.06 g L−1 of adsorbent, and
aqueous orange I solution in a concentration range of 20–200 mg L−1.
The synthesized material's final uptake was 25 mg g−1 (Boucif et al.,
2010). In 2018, the adsorption of reactive black 5 and congo red by do-
lomite treated at 900 °Cwas investigated in single and binary solutions.
At equilibrium, congo red was more strongly coadsorbed than reactive
black 5, with maximum adsorption capacities of 229.18 and 72.37 mg
g−1 at 40 °C, respectively (Ziane et al., 2018). At last, in 2019, low-cost
porous calcined dolomite microspheres were prepared by simple
spray drying and subsequent calcination. The material was tested
against methylene blue removal in the conditions of 20 g L−1 of adsor-
bent and 100 mg L−1 of dye. The adsorption kinetics followed the
pseudo-second-order, while the isotherm data fit the Langmuir model.
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In this context, the microspheres' removal efficiency reached 95.6%
(Yan et al., 2019).

Mahmoodi and Saffar-Dastgerdi (2019) prepared sodalite zeolite
nanoparticles, subsequently modified by different amounts of 3-
aminopropyl-triethoxy-silane, resulting in products with 2.3 wt.%, 4.4
wt.%, and 6.5wt.% of the organicmodifier, named 0.5, 1, and 1.5 zeolites,
respectively. The surface-modified productswere used for adsorption of
Direct Red 23 andDirect Red 80 from simulatedwastewater. After initial
tests, 0.5 zeolite was elected as the best, and it was tested furtherly.
Equilibrium data followed Langmuir isotherm and pseudo-second-
order kinetic. The adsorption capacity of the 0.5 composite reached ex-
pressive 2415 and 4842mg g−1 for Direct Red 80 and Direct Red 23, re-
spectively. Thermodynamics was studied and measured Gibbs free
energies at 298, 313, 323, and 333 K were − 12.53, −14.68, −16.12,
and − 17.55 kJ mol−1 for Direct Red 23, and − 9.27, −11.73, −13.37,
and − 15.01 kJ mol−1 for Direct Red 80, respectively. The adsorption
process was physisorption, exothermic, and spontaneous (Mahmoodi
and Saffar-Dastgerdi, 2019).

6.2.2. Pharmaceuticals
Martín et al. (2019) modified natural montmorillonite and a syn-

thetic mica with cationic octadecyl-amine by a cation-exchange reac-
tion and explored its potential use adsorbent for ibuprofen removal.
The adsorption equilibrium isotherm was fitted with the Langmuir
and Freundlich mathematical models (R2 > 0.999). The adsorption
rate of C18-montmorillonite (removal efficiency = 99.9%) was not de-
pendent on ibuprofen concentration (0.1–80mg L−1), but C18-mica be-
haved contrarily (from 99.9% at 0.1 mg L−1 to 67% at 80 mg L−1).
Variations in pH ranging from 4 to 9, did not affect the process.
Pseudo-second-order kinetic model best described the adsorption of
ibuprofen (R2 > 0.993), reaching equilibrium, with outstanding effi-
ciency up to 100%, in less than 5 and 60 min for C18-montmorillonite
and C18-mica, respectively (Martín et al., 2019).

Azizi (2020) studied a greenpreparationmethod of iron oxide/cellu-
lose nanocomposite, used to remove metronidazole, an antibiotic, from
aquatic solutions in the form of an aqueous extract of spent tea waste,
regarding its effective andmagnetic separation capability. The prepared
nanocomposite had spherical particles with an average size of 15.5 nm.
At pH 5, the metronidazole concentration of 10 mg L−1, the adsorbent
dosage of 25mgL−1, and contact timeof 30min, the pollutant's removal
efficiency was 97.04%. Langmuir isotherm determined the maximum
adsorption capacity of 332 mg g−1, pseudo-first-order kinetic constant
rate of 1.15 L min−1, with the determination coefficient of 0.97 (Azizi,
2020).

The adsorption and advanced oxidation of diverse pharmaceuticals
and personal care products from the water were studied by Masud
et al. (2020). Interestingly, they started assuming that their model
pollutants are found as a complex mixture in wastewater and the envi-
ronment and used reduced graphene oxide as a support for nano-
zerovalent iron against a complex mixture of 12 diverse personal care
products (including antibiotic, anti-inflammatory, anti-seizure, and an-
tidepressant pharmaceuticals). This approach is exciting for most stud-
ies on removing personal care products results with only one pollutant
at a time, typically at high initial concentrations, not environmentally
relevant. Considering starting concentration of 200 μg L−1, an adsorbent
dosage of 533mg L−1, pH 3, and after a contact time of 30 min, final re-
moval efficiencies for venlafaxine, citalopram, paroxetine, fluoxetine,
diclofenac, ibuprofen, naproxen, acetaminophen, carbamazepine,
lamotrigine, sulfamethoxazole, and caffeine reached 88.5%, 98.92%,
99.58%, 98.71%, 97.92%, 88.55%, 99.25%, 82.97%, 85.75%, 95.23%, 74.13%
and 93.12%, respectively (Masud et al., 2020).

De Oliveira et al. (2020) investigated micro and mesoporous silica
prepared with coal fly ash as startingmaterial and used as an adsorbent
to remove parabens. The composite prepared at pH 7 presented higher
adsorption capacity, with a surface area of 396 m2 g−1. Adsorption ki-
neticswere carried out in a batch systemwith a 40mLmulticomponent
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paraben solution at 5 mg L−1, 2 mg adsorbent mass, pH 3, agitation at
300 rpm for 30 min at room temperature (28 ± 2 °C). The same condi-
tions were used in equilibrium tests, but the multicomponent parabens
concentrations varied from1 to 20mg L−1. The adsorption capacitywas
determined as 0.01, 0.07, 0.54, and 1.31 mg g−1 for methylparaben,
ethylparaben, propylparaben, and butylparaben, respectively, by fitting
the data obtained to Freundlich isotherm (R2> 0.999) (DeOliveira et al.,
2020).

Differently than the previous minerals, modified clays have been
prepared by several different research groups and applied for the ad-
sorption of many pharmaceuticals, such as amoxicillin (Pierucci et al.,
2017), atenolol (Seema, 2013), carbamazepine (Dordio et al., 2009;
Styszko et al., 2015), chloramphenicol (Lawal and Moodley, 2018),
cinnamic acid (Calabrese et al., 2017), ciprofloxacin (Hamilton et al.,
2014), diclofenac (Pierucci et al., 2017; Styszko et al., 2015), furosemide
(Machado et al., 2017), gemfibrozil (Dordio et al., 2017), ibuprofen
(Dordio et al., 2009; Styszko et al., 2015), ketoprofen (Styszko et al.,
2015), mefanamic acid (Dordio et al., 2017), metronidazole (Calabrese
et al., 2013; Kalhori et al., 2017), nalidixic acid (Lawal and Moodley,
2018), naproxen (Dordio et al., 2017), ofloxacin (Wang et al., 2014),
oxytetracycline (Figueroa et al., 2004), promethazine (Gereli et al.,
2006; Seki and Yurdakoç, 2009), propranolol (Pierucci et al., 2017), sul-
famethoxazole (Lawal andMoodley, 2018), tetracycline (Figueroa et al.,
2004; Lawal and Moodley, 2018; Liu et al., 2011), trimethoprim (Bekçi
et al., 2006) and venlafaxine (Silva et al., 2018).

7. Conclusion

After exploring the literature, it was stated that unmodified and
modified geological materials have yet been poorly explored as adsor-
bents. The studies performed report generally high adsorption ability
against inorganic and organic pollutants, associatedwith low-cost in re-
trieving, recycling, and applying these materials for environmental re-
mediation purposes. In general, all minerals presented interesting qmax

values for metal ions adsorption, while clay composites presented
themselves as a more suitable choice for removing dyes and other or-
ganic pollutants. Besides, geopolymers rise in the “from waste to
waste” approach, re-destining environmental liabilities, such as fly
ash, by using polymerization reactions between minerals containing
aluminum and silicon and an activating agent. Overall, the geological
originated materials represent promising candidates for removing
metal ions, antibiotics, phenolic compounds, dyes, pesticides, and herbi-
cides in their modified and unmodified versions, from various industrial
wastewater types and aquatic environments.
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