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Abstract: Scheduling flexible job-shop systems (FJSS) has become a major challenge for different
smart factories due to the high complexity involved in NP-hard problems and the constant need to
satisfy customers in real time. A key aspect to be addressed in this particular aim is the adoption of a
multi-criteria approach incorporating the current dynamics of smart FJSS. Thus, this paper proposes
an integrated and enhanced method of a dispatching algorithm based on fuzzy AHP (FAHP) and
TOPSIS. Initially, the two first steps of the dispatching algorithm (identification of eligible operations
and machine selection) were implemented. The FAHP and TOPSIS methods were then integrated to
underpin the multi-criteria operation selection process. In particular, FAHP was used to calculate the
criteria weights under uncertainty, and TOPSIS was later applied to rank the eligible operations. As
the fourth step of dispatching the algorithm, the operation with the highest priority was scheduled
together with its initial and final time. A case study from the smart apparel industry was employed
to validate the effectiveness of the proposed approach. The results evidenced that our approach
outperformed the current company’s scheduling method by a median lateness of 3.86 days while
prioritizing high-throughput products for earlier delivery.

Keywords: FJSP; MCDM; fuzzy; AHP; TOPSIS; smart manufacturing; apparel industry; optimization;
innovation; decision analysis

1. Introduction

Current market trends, the variety of consumer demand, the short life cycle of the prod-
uct, and competitive pressure have pushed companies to tackle the problem of reduction of
production costs through better management of available resources. One fundamental tool
is represented by the scheduling algorithms for the optimization of production [1]. Schedul-
ing problems are decision-making problems in which the factor of time is of fundamental
importance, understood as a (scarce) resource to be allocated in an optimal way [2]. In
the context of industrial manufacturing, scheduling consists in determining the sequential
allocation of jobs to the machines, which optimizes a certain objective function and respects
at the same time the constraints imposed [3]. More specifically, a scheduling problem is
uniquely described by three factors: architecture of the production system, process parame-
ters, and any constraints of the function to be optimized. The scheduling problem has been
analyzed in numerous studies, which have allowed the development of different models
that represent it and different methods to solve it [4]. Several applications can be traced
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back to scheduling problems: the regulation of user access to a service, the assignment of
operations at workstations during the transformation process of a product, the timing of
activities to be carried out within a project complex, the assignment of classrooms to a set
of classes, regulation of vehicle accesses at an intersection through traffic light control, the
assignment of tracks to railway trains, and the use of tracks and/or gates by planes arriving
or departing from an airport. Scheduling problems can be represented through appropriate
models [5–10]. The main scheduling models are (1) single machine, (2) parallel machines,
(3) job shop, (4) flexible job shop, (5) flow shop, (6) flexible flow shop, and (7) open shop.
The complexity of the models depends on the resources available, the type of constraints
present, and the choice of objectives. In Figure 1, the main models used for the scheduling
problems are illustrated.

Figure 1. Classification of the main production systems.

An extension of the classical job shop scheduling problem is the flexible job-shop
system (FJSS). It is a very important topic in the field of production management and
smart manufacturing [11]. FJSS algorithms should be adapted to effectively support the
response of available operational technology (OT) within the day-to-day operations of
smart companies. However, classical scheduling methods are generally incapable of solving
complex problems characterized by a continuous upgrading of the production mode of
the manufacturing system [12]. A key aspect to be addressed in this aim is the adoption
of a multi-criteria operation selection approach, incorporating the current dynamics of
smart FJSS [13]. To face this challenge, this paper proposes a hybrid and innovative
model of a dispatching algorithm based on fuzzy AHP (FAHP) and TOPSIS. In particular,
FAHP was used to calculate the criteria weights under uncertainty, and TOPSIS was later
applied to rank the eligible operations. A case study from the smart apparel industry
was employed to validate the effectiveness of the proposed approach. In this case, a FJSS
with two objectives (minimize the average lateness and maximize throughput), seven
sub-processes, 13 products, and 29 orders was considered. The results evidenced that our
approach outperformed the current company’s scheduling method by a median lateness of
3.86 days while prioritizing high-throughput products for earlier delivery. Our approach
differs from previous work published in the literature that tended to focus solely on the
classical approach. Our aim is to propose an integrated approach for the flexible job-shop
scheduling problem for smart manufacturing that combines the benefits of each method.

The rest of the paper is structured as follows: Section 2 presents a literature review on
FJSS and smart manufacturing. The aim of Section 2 is to briefly outline the trends in the
topic analyzed. Section 3 explains materials and methods. Thereafter, Section 4 presents an
illustrative example from the smart apparel industry. Results and discussion of the main
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findings of the research are analyzed in Section 5. Finally, Section 6 provides implications
for research and future development.

2. Literature Review on FJSS and Smart Manufacturing

The topic of scheduling flexible job-shop systems (FJSS) is a theme analyzed in the
scientific literature as early as the 1980s, as demonstrated by a survey carried out on
Elsevier’s Scopus, the largest abstract and citation database of peer-reviewed literature.
In order to identify publications on FJSS, an investigation using the string “Scheduling
flexible job-shop systems” has been used. Only articles in which the string was found in the
(1) article title, (2) abstract, or (3) keywords were analyzed (TITLE-ABS-KEY (scheduling
AND flexible AND job-shop AND systems). The analysis on Scopus found 961 documents
resulting from 1980 to 2021 (May 2021, period of investigation). The research highlighted
a growth in the number of publications. Most of them have been published in 2020
(86 documents). Figure 2 shows the trend of publications over the years.

Figure 2. Documents by year (source: Scopus).

The investigation on Scopus highlighted that the three most productive countries are
China (287; 30%), the United States (123; 13%), and France (67; 7%). The result is not a
surprise, because it only confirms that “big” countries in terms of population are obviously
the most productive ones. Interestingly, other countries like Japan are also making great
advances now in plant scheduling. A worthy study was proposed in 2019 by Sun et al. [14]
in which a hybrid cooperative coevolution algorithm (hCEA) for the minimization of
fuzzy makespan was proposed. Furthermore, in 2015, Gen et al. [15] developed hybrid
genetic algorithms (HGA) and multiobjective HGA (Mo-HGA) to solve manufacturing
scheduling problems.

We have also investigated other parameters, as explained below. In particular, the
analysis of documents by type pointed out the following distribution: articles (548; 57%),
conference papers (346; 36%), conference reviews (44; 5%), books and chapters (8; 1%),
reviews (8; 1%), and other (Letter. Editorial. Note 5; 1%). The analysis of documents by
subject area highlighted that most of the publications (92%) belong to the following area:
engineering (34%); computer science (29%); mathematics (10%); decision sciences (10%);
business, management, and accounting (8%); and other (9%).

The literature on the subject is certainly very extensive. Thus, we investigated a very
precise aspect related to smart manufacturing. In the context of “smart manufacturing”,
we have selected 19 documents in line with our research goal. We selected the documents
by examining the keywords and the field of application by analyzing all the documents
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resulting from the investigation. Table 1 summarizes the number of documents by year
and by type.

Table 1. Documents by year and type (source: Scopus).

Year No. Articles
Documents by Type

Conference Paper Article

2020 3 / 3

2019 9 5 4

2018 2 1 1

2017 4 3 1

2016 1 1 /

Figure 3 depicts the time distribution of the papers and the number of citations.

Figure 3. Publication volume and citations in the literature (source: Scopus).

According to the literature analysis, we have analyzed in detail the 19 documents as
shown below. In particular, the following considerations emerged.

Recently, Li et al. [16] developed an optimization algorithm to solve the FJSP in the
context of a smart production plant. Ghaleb et al. [17] proposed a real-time scheduling
model for the FJSP. Mihoubi et al. [18] proposed a genetic algorithm to solve the FJSP
problem. In 2019, Lim et al. [19] proposed a reusable scheduling problem decomposi-
tion framework for Industry 4.0 that facilitates agent-embedded optimization. In 2019,
Vazan et al. [20] defined a simulation model of the smart flexible manufacturing system
with interchangeable workplaces. A different point of view was introduced by Ma et al.
in 2019 [21]. They introduced an anarchic manufacturing model to evaluate the relative
flexibility of a representative hierarchical system against an anarchic system in a job shop
scenario. A survey on the scheduling in production in the context of Industry 4.0 systems
was proposed by Dolgui et al., 2019 [22]. Heger and Voß [23] presented a scheduling and
dispatching approach for a flexible job shop incorporating travel times of autonomous
guided vehicles. Some studies propose functional architecture for flexible manufacturing
systems [24,25]. Other studies develop a heuristics model and algorithm to optimize and
support scheduling flexible job-shop systems [26–30]. In 2017, a heterarchical approach
based on intelligent products was analyzed by Bouazza et al. [31]. Dolgui with Ivanov and
Sokolov [32] developed a model of job shop scheduling in a customized manufacturing
process. A simulation approach was proposed in some studies such as by Son et al. [33]
that simulate a flexible manufacturing system for producing aircraft. A novel approach
based on Machine to Machine (M2M) was well argued by Yuan et al. [34]. From our point
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of view, it was also important to analyze the keywords in common with the selected docu-
ments and the most used ones. In this regard, Table 2 shows a classification of documents
by keywords.

Table 2. Documents by keywords (source: Scopus).

Authors Years Source
Keywords

Job Shop
Scheduling Scheduling Manufacture Smart

Manuf./I4.0

Ghaleb et al. 2020 Computers and Operations Research X X

Li et al. 2020 International Journal of Advanced
Manufacturing Technology X X

Lim et al. 2019 IEEE International Conference on Industrial
Engineering and Engineering Management X X X

Vazan et al. 2019 Proceedings of the 2019 20th International
Carpathian Control Conference. ICCC 2019 X X X

Ma et al. 2019 International Journal of Production Research X X X
Dolgui et al. 2019 International Journal of Production Research X X X

Heger and Voß 2019 Procedia CIRP X X X
Murín and Rudová 2019 Lecture Notes in Computer Science X X X

Kim and Kim 2019 Peer-to-Peer Networking and Applications X X X X
Alves et al. 2019 FME Transactions X X
Gozali et al. 2019 IOP Conference Series X X X

Lunardi et al. 2018 IEEE International Conference on Emerging
Technologies and Factory Automation. ETFA X X X X

Bouazza et al. 2017 IFAC-PapersOnLine X X X X

Ivanov et al. 2017 IFIP Advances in Information and
Communication Technology X X X X

Son et al. 2017 Simulation Series X X X X

Yuan et al. 2017 Proceedings of International Conference on
Computers and Industrial Engineering. CIE X X X X

Wang et al. 2016 IEEE International Conference on
Mechatronics and Automation X X X

The analysis of the literature review pointed out that the selected documents are very
heterogeneous with each other. Most of them propose traditional methods for solving
scheduling problems. Some of them highlight the importance of communication tech-
nologies as the key tool that enables the interconnection among a priori isolated business
processes. Among them, Jacob et al. [35] analyzed the use of 5G and Tian et al. [36] in-
vestigated the use of the Internet of Things, as they enabled manufacturing enterprise
information systems to solve scheduling problems. Already in 2010, Zhao et al. [37] pro-
posed a hybrid algorithm for production scheduling integration in holonic manufacturing
systems. It is also clear that in modern competitive companies, the scheduling problem
is also associated with correct maintenance, as pointed out by some authors [38,39]. In
addition, it is important to note that, although several studies on FJSS have been published,
the integration of a decision tool based on MCDA is not treated to solve the flexible job
shop scheduling problem. However, it is clear that in a dynamic and complex environment
such as the modern smart factories, the use of multi-criteria decision-making methods
could represent an opportunity from a practical and problem-solving point of view, as
stated by several authors [40–42]. In this way, more perspectives can be considered. It is a
fundamental management strategy from a smart manufacturing perspective in which many
factors must be taken into consideration. In fact, scheduling is a “form” of decision-making,
which consists in allocating finite resources in such a way that a given goal is optimized.
A scheduling problem contains the following information: (1) the decision variable and
(2) the criterion by which the decision variables are evaluated (performance measure). In
other words, a solution to a scheduling problem consists in identifying the optimal decision
in the sense specified by the particular criterion adopted. As -making methods definitely
represent a very effective tool in modern factories from a managerial point of view, our
research aims to cover the literature gap.
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3. Materials and Methods
3.1. Problem Definition and Modeling Phase

The suggested dispatching-fuzzy AHP-TOPSIS (DFT) methodology entails the com-
bination of three methods for solving the FJSP in smart manufacturing: the dispatching
algorithm, the fuzzy analytic hierarchy process, and TOPSIS. Such a combination is de-
veloped through a four-phase methodology outlined in Figure 4. The proposed approach
is an adaptation of the algorithm presented by Calleja and Pastor [43]. A more detailed
explanation of each phase is provided below:

Phase 1: In this step, the production system is characterized by defining the route of
each product reference, the available machines associated with each sub-process, the setup
times (SUtj), and the processing times (pi,k,l,j), whereas the jobs are fully detailed in terms
of their features. This information defines the N subset, which covers all the operations
to be scheduled. Following this, the E subset, comprised of all operations eligible for
immediate execution (the first operation of each job), is arranged while specifying their
r1,k,l values. The f pj is then defined in each machine, and f pmin is finally identified from
the list of m machines.

Figure 4. The proposed DFT approach for solving the FJSP.

Phase 2: In the next step, the machine with f pmin is selected. Then, all the candidate
operations associated with the selected machine are enlisted. In the case of various ma-
chines with f pmin, the operation to be scheduled must be chosen by implementing the
operation prioritization framework depicted in Phase 3. A f pmin = α denotes that all the
operations have been programmed.

Phase 3: This stage involves choosing the operation to be scheduled or enlisted in
the subset P. In this regard, there are two possible scenarios. In the case of a set of eligible
operations, the DFT (Dispatching-Fuzzy AHP-TOPSIS) approach must be implemented. To
this end, an operation prioritization model has to be first defined considering the criteria
or job features that are of special interest to the company. FAHP (see Section 3.2) is then
employed to estimate the relative importance of these criteria under uncertainty. After
this, TOPSIS (see Section 3.3) calculates a priority index (closeness coefficient) for each
eligible operation. The operation with the highest index is finally selected to be accordingly
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included in the subset P. The remaining scenario is the one in which there is only one
candidate operation; in such a case, the scheduler must pass it immediately to the subset P
without implementing the operation prioritization model here proposed.

Phase 4: The final step of this methodology is to enlist the selected operation while
outlining its start and end times. The end time is calculated by using the formula specified
in Figure 3 considering whether j = j′. Following this, the f pj value of the machine j
associated with the selected operation is updated. rpi,k,l, j and f pmin are then computed
according to Figure 3. Ultimately, the scheduler must return to Phase 1 until all the
operations are scheduled ( f pmin = α).

3.2. Fuzzy Analytic Hierarchy Process (FAHP)

Fuzzy logic was integrated with the AHP technique to address the lack of clarity
arising from human judgments, for example, in paired comparisons [44–46]. To this end,
fuzzy sets provide a solid foundation for solving real-world MCDM problems, which
inevitably involve some level of noise in their structure. Under consideration of these
aspects, AHP becomes FAHP. The judgments are represented by triangular numbers M
denoted by (a. b. c), and the membership function is described as follows:

µ∼M(x) =


x−a
b−a . a ≤ x ≤ b
c−x
c−b . b ≤ x ≤ c
0. otherwise

Here, −∞ < a ≤ b ≤ c < ∞.
The lower and upper limits are a and c, whereas the strongest degree is symbolized

by the parameter b. The fuzzy triangular numbers to be employed in evaluating the
importance of operation selection criteria and sub-criteria are described in Table 3. A
shorter version of the Saaty’s scale (5-point scale) is proposed to accelerate the decision-
making process and reduce bias when making the paired judgments [47].

Table 3. Fuzzy triangular numbers employed in FAHP.

Shorter Version of Saaty’s Scale Importance Degree Fuzzy Triangular Number

1 Equally important [1.1.1]
3 More important [2.3.4]
5 Much more important [4.5.6]

1/3 Less important [1/4.1/3.1/2]
1/5 Much less important [1/6.1/5.1/4]

The FAHP procedure is as follows:
Step 1: The fuzzy triangular numbers referred to in Table 3 are used to make a pairwise

comparison between criteria and sub-criteria. In this way, it is possible to obtain the matrix
of fuzzy judgments for ÃK (Equation (1)):

ÃK =


ãk

11 ãk
12 . . . ãk

1n
ãk

21 ãk
22 . . . ãk

2n
. . . . . . . . . . . .
ãk

n1 ãk
n2 . . . ãk

nn

 (1)

ãk
ij represents the kth decision-maker’s predilection of ith decision element (criterion/sub-

criterion) over jth decision element (criterion/sub-criterion).
Step 2: If the decision is supported by a decision-making group, the comparisons

should be aggregated by applying Equation (2). Here, K represents the number of experts
involved in the judgment process. After this, the initial matrix of fuzzy comparisons is
updated, as shown in Equation (3).

ãij =
K
√

ã1
ij ∗ ã2

ij ∗ · · · ∗ ãk
ij (2)
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Ã =

 ã11
...

ãn1

. . .
. . .
. . .

ã1n
...

ãnn

 (3)

Step 3: The geometric mean of the fuzzy comparisons (r̃i) for each decision element
(criterion or sub-criterion) is computed, taking Equation (4) as a reference:

r̃i =

(
n

∏
j=1

ãij

)1/n

. i = 1.2. . . . .n (4)

Step 4: The fuzzy relative priorities of all criteria (w̃i) are estimated by employing
Equation (5)

w̃i = r̃i ⊗ (r̃1 ⊕ r̃2 ⊕ . . .⊕ r̃n)
−1 = (lwi.mwi.uwi) (5)

Step 5: (w̃i) is defuzzified using the center of area method [48] described in Equation (6).
Here, Mi denotes a non-fuzzy number.

Mi =
lwi + mwi + uwi

3
(6)

Step 6: Mi is normalized by implementing Equation (7)

Ni =
Mi

∑n
i=1 Mi

(7)

3.3. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS is a multi-criteria decision method developed by Hwang and Yoon [49] for
ranking alternatives considering the shortest distance from the positive-ideal solution (PIS)
and the farthest separation from the negative-ideal solution (NIS) [50,51]. The outcome is
an indicator called “closeness coefficient” (priority index) ranging between 0 and 1, which
enables schedulers, production managers, and practitioners to prioritize operations swiftly.
The TOPSIS technique also holds the following advantages:

• It can consider both conflicting quantitative and qualitative features, a context often
found in scheduling scenarios where the operations need to be prioritized according
to a set of selection criteria [52].

• The FJS algorithms often utilize one prioritization rule and apply others in case of a
tie among different operations or jobs; however, the closeness coefficient derived from
TOPSIS can be adopted as an overall measure representing these rules simultaneously
and thereby emulating the real decision-making scenario addressed by production
managers and practitioners.

• It allows decision-makers to establish how the operation/job priority may change if
its features are modified during the negotiation process with a client or in presence of
different market and production configuration conditions. In this regard, sensitivity
analysis can be fully underpinned based on separations from PIS and NIS [53–56].

The general TOPSIS procedure is outlined in Figure 5 [57]:

Figure 5. TOPSIS algorithm.
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Step 1: A decision matrix X with “m” operations and “n” sub-criteria is created via
Equation (8). Xij is the value of the sub-criterion Sj (j = 1, 2, . . . , n) in each operation
Oi(i = 1, 2, . . . , m).

X =

O1
O2
O3
...

OM



S1
x11
x21
x31

...
xm1

S2
x12
x22
x32

...
xm2

. . .

. . .

. . .

. . .

. . .

. . .

Sn
x1n
x2n
x3n

...
xmn


(8)

Step 2: The normalized decision matrix R is calculated using Equation (9). nij is
the norm used by TOPSIS via Equation (10). Additionally, rij is defined as the element of
this matrix.

R = X·nij (9)

nij =
xij√

∑
y
i=1 x2

ij

(10)

Step 3: The weighted normalized decision matrix V is obtained using Equation (11).
The sub-criteria weights (wj) are those resulting from the FAHP method.

V =
[
wjrij

]
=
[
vij
]

(11)

Step 4: The ideal (C+) and anti-ideal (C−) scenarios are established according to
Equations (12) and (13), respectively:

C+ =
{(max

i c ij
∣∣j ∈ J

)
.
(

min
i c ij

∣∣∣j ∈ J′
)

f or i = 1.2. . . . .m
}{

c+1 .c+2 . . . . .c+j . . . . .c+n
}

(12)

C− =
{(

min
i c ij

∣∣∣j ∈ J
)

.
(max

i c ij
∣∣j ∈ J′

)
f or i = 1.2. . . . .m

}
=
{

c−1 .c. . . . .c−j . . . . .c−n
}

(13)

Considering that:

J = {j = 1.2. . . . .n|j associated with the bene f it sub− criterion}
J = {j = 1.2. . . . .n|j associated with the cost sub− criterion}

Step 5: The separation measures of each operation to C+ and C− are calculated using
the Euclidean separation via Equations (14) and (15).

Euclidean separation from ideal scenario

d+i =

√√√√ n

∑
j=1

(
cij − c+j

)2
i = 1.2. . . . .m (14)

Euclidean separation from anti-ideal scenario

d−i =

√√√√ n

∑
j=1

(
cij − c−j

)2
i = 1.2. . . . .m (15)

Step 6: The relative closeness coefficient (CCi) is calculated by using Equation (16).

CCi =
d−i(

d+i + d−i
) . 0 < CCi < 1. i = 1.2. . . . . m (16)

Step 7: The operations are ranked according to CCi.
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4. Numerical Experiment for a Smart Apparel Industry

The DFT algorithm here proposed was implemented in the production system of a
South American textile firm (13/13/G/Tmed) whose demand schedule is comprised of
29 jobs. The process steps and sequence of operations are outlined in Figure 6.

Figure 6. Process stages and sequence of operation in the textile flexible job shop system (FJSS).

Six main processes compose this system: WEAVING, DYEING, PRINTING, CUTTING,
WHIPSTITCHING, and CLEANING. In particular, WEAVING has a set of three worker-
machines (T1, T2, and T3), while DYEING can be performed by four machines (C1, C2,
C3, and C4). On the other hand, there is only one PRINTING machine (E), supported
by a manufacturing cell. In addition, two machines (CL1 and CL2) can carry out the
WHIPSTITCHING sub-process. Finally, two worker cells (LP1 and LP2) are available
for underpinning the CLEANING stage. In this case, the reference scheduling date is
31 January. On a different tack, as observed in Figure 5, each product type follows a
specific processing route with m machines capable of performing the operations at different
production rhythms and thereby configuring the FJSS. Additionally, the regular working
period is 24 h per day. The arduous task then lies in scheduling a system with a variety of
product references, orders, transfer times, and machines with different production speeds
and setup times while minimizing the average lateness, a characteristic scenario of an
NP-hard problem [58].

Table A1 (Appendix A) enlists the processing times (in min) of each sub-process in each
machine j. In this table, “-“ denotes that a particular machine is not technically available
for processing the reference or the sub-process is not part of the reference operation route.
For instance, PRINTING is not a sub-process within the production path of SINGLE
COLOR BEDCOVER and SINGLE FRINGE COLORED BEDCOVER, whereas the DYEING
department does not process WHITE MULERA units. A different scenario is observed in
references such as STAMPED SINGLE BEDCOVER and STAMPED DOUBLE BEDCOVER
that go through all the sub-processes integrating the FJSS.

The company currently employs the earliest delivery date (EDD) approach, where the
orders are processed considering the earliest due date first.

The demand schedule containing the delivery dates of these jobs is shown in Table A2.
This table also reveals the presence of tardy jobs (31.03%; n = 9 jobs), whose days of
tardiness are specified in the DOT column. The order quantity, average monthly demand
(MD) throughput, and % of tardiness are also outlined in this table. Table A2 (Appendix A)
presents the customer type and quantity related to the orders integrating the demand
schedule. This information is useful for the deployment of the DFT approach (operation
selection policy) proposed in this paper. The significant proportion of tardy jobs, the
great percentage of tardiness in some high-priority references, and the need for reducing



Appl. Sci. 2021, 11, 5107 11 of 27

lateness as a competitive strategy have motivated the company schedulers to implement
the proposed framework. If not addressed, these inefficiencies may result in possible
financial sanctions and loss of customer loyalty to the firm.

On a different note, Table A3 (Appendix A) depicts the setup times and available
machines for each operation. In this case, the setup times include all the activities related to
the machine preparation and work-in-process (WIP) mounting/disassembly. These times
vary according to the operation to be performed. For example, the setup time in PRINTING
includes (i) putting the fabric roll on the printing machine, (ii) installing the printing
frames, and (iii) spraying the ink onto the surface of the bedcover. Table A3 (Appendix A)
also pinpoints that not all the machines are available for processing a particular product
reference. For instance, T1 and T2 can be used for weaving the SINGLE COLORED
BEDCOVER fabric, which is not possible in the SINGLE FRINGE COLORED BEDCOVER
due to technical restrictions.

Before implementing the proposed method, it was necessary to create the MCDM model
supporting the operation prioritization phase. In reply, seven job criteria or features (F1: job
quantity; F2: customer type; F3: throughput; F4: monthly demand; F5: number of tardy jobs
per product; F6: tardiness; and F7: number of remaining process steps) were identified.

This set of criteria (Figure 7) was pointed out considering the pertinent scientific liter-
ature and the experts’ opinion (5 production managers, 2 sales staff, the general manager,
and the administrative director of the company). The experts have wide experience in
production and demand management (>20 years); in addition, they have been related
to the textile sector for more than 15 years and hold a professional degree in Business
Administration/Industrial Engineering fields. The design of the hierarchy was led by two
coauthors of this paper (MO and NJ) who have significant expertise and background in
MCDM methods.

The next step was to elicit the relative priorities of each job criterion in the global
decision of selecting the highest priority operation. FAHP was implemented to deal with
this task considering its advantage of calculating the importance of each decision element
under uncertainty. The ambiguity was incorporated in this application to obtain more
realistic results given the nature of human thought and reasoning; in this case, represented
by paired judgments or comparisons. In particular, the experts used the five-point scale
depicted in Table A4 (Appendix A) to establish how important criterion i is with respect
to criterion j when choosing the highest priority operation in FJSP. The comparisons were
collected through a survey designed in a Microsoft Excel spreadsheet. The matrixes of
fuzzy judgments ÃK were derived for each expert using Equation (1). After this, the
matrixes were aggregated by employing Equations (2) and (3). The resulting matrix Ã is
presented in Table A5 (Appendix A). Following this, the geometric means of the fuzzy
comparisons ( r̃i) were calculated for each decision element (job criterion or feature) by
implementing Equation (4) (Table A6).

Table A6 (Appendix A) also presents the fuzzy relative priorities of criteria (w̃i), which
were achieved by using Equation (5). The fuzzy weights were then converted into crisp
values using the center of area method (Equation (6)) (Table A6). These weights were
normalized via applying Equation (7). The results revealed that tardiness (F6) was found to
be the most important feature (GW = 0.414) when selecting the highest priority operation.
This is supported by the fact that clients are more aware of being supplied in a timely man-
ner, as previously agreed. Therefore, non-compliance with this critical factor of satisfaction
may represent a potential loss of loyalty and future incomes. In fact, various competitors
can take advantage of this weakness and subsequently increase their market share. This is
also greatly related to the second aspect of importance in this application (number of tardy
jobs per product—F5; GW= 0.203), which aims to reduce the dissatisfaction proportion
of products with high expectations and background in the market. Another aspect of
relevance is the throughput—F3 (GW = 0.200) of the references offered by the company.
The throughput is defined as the amount of money earned by the company per time unit
in the bottleneck resource; in other words, the speed at which the FJSS generates money for
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the firm [32,33]. In this respect, the company is interested in prioritizing those products
with high throughput, which would ensure better utilization of their resources. The rest
of the criteria (monthly demand, number of remaining steps, and customer type) were
not found to be highly significant (GW < 0.10) on the operation selection model. On the
other hand, as the CR (0.09082) was found to be less than 0.10, the matrix is concluded
to be consistent, and the resulting weights are considered reliable for implementation in
the practical scenario. This outcome also supports the use of a shorter version of Saaty’s
scale as well as the importance of deeply understanding the hierarchy before making
the comparisons. These weights (W) were later incorporated into the initial matrix X
(Equation (8)) of TOPSIS application, as evidenced in Table A7 (Appendix A). This table
enlists all the eligible operations in iteration 1 in conjunction with their criteria values to
show an example of this procedure. In addition, the ideal (C+) and anti-ideal (C−) scenarios
are presented in this table according to Equations (12) and (13), correspondingly. The norm
of each column was then calculated via implementing Equation (10) (Table A7). Following
this, the normalized decision matrix R was achieved by using Equation (9) (Table A8 in
Appendix A). Afterward, the weighted normalized decision matrix V was computed by
implementing Equation (11) (Table A9, in Appendix A). The next step was to derive the
Euclidean distance of each criterion to the ideal (C+) (Equation (14)) and anti-ideal (C−)
(Equation (15)) scenarios in each eligible operation, as observed in Tables A10 and A11
(Appendix A), respectively.

Figure 7. The operation prioritization model.

Finally, the closeness coefficient or “priority index” of each eligible operation was
computed via employing Equation (16) (Table A12 in Appendix A). In this iteration, the
operation (1, 1, 9) was found to have the highest priority and had to be then chosen as the
first operation to be scheduled. It is important to note that the first 6 ranked operations—
CCi* > 0.5 (1,1,8; 1,1,10; 1,1,3; 1,2,8; 1,2,2; 1,1,2)—correspond to orders with the highest
tardiness at the beginning of the scheduling process. This is explained by the fact that
the two most relevant job features are associated with tardiness. On a different tack, the
resulting schedule using the proposed DFT algorithm is shown in Table A13 (Appendix A).
When contrasting the methods, we found that DFT (Test 1: −2.03 days) provides lower
average lateness compared to EDD (Test 1: −0.41 days). This represents a reduction of
395.12%, which would increase the competitiveness of the smart textile company in both
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national and international markets. A more detailed analysis of iteration 1 is depicted in
Figure 6, where we can observe that the overall DFT performance is mainly related to the
orders (1,6), (3,2), (2,6), (2,1), (2,3), (1,1), and (1,7).

5. Results

According to the DFT results, the order with the earlier delivery with respect to the
due date is (1,6) with 20 days in advance, while the best performance in EDD is seen in the
jobs (2,2), (1,2), (1,4), and (1,6) with eight days of anticipation. In addition, the maximum
lateness (13 days) is observed in (2,5) (EDD) and (1,8) (DFT). In a similar way, we can
conclude that the DFT algorithm also prioritized the references with the highest throughput
(3: US$1.33/min; 6: US$1.29/min; 12: US$1.27/min), which can be demonstrated through
their negative lateness (Figure 8).

Figure 8. Lateness of orders resulting from EDD and DFT methods.

Furthermore, 10 iterations were carried out (including the afore-described iteration
1) to validate the general performance of the DFT and EDD models in terms of average
lateness (Table A14, in Appendix A). In this case, the results confirmed that using the same
set of machines, the average discrepancy between the methods is 3.86 days in favor of DFT.
This was validated through a non-parametric Wilcoxon test (Table A15 in Appendix A) for
paired samples (α = 0.05), which concluded that the median lateness achieved with the DFT
method is significantly minor than the one provided by EDD (Z = −2.803; p-value = 0.005).

6. Conclusions

Scheduling flexible job-shop systems is a complex challenge in the context of smart
manufacturing due to the dynamic and changing nature of the productive environment
often characterized by a wide product portfolio, different production paths, technical restric-
tions, the availability of distinct technology types for the same operation, and the constant
need for high customer satisfaction. In this regard, the use of integrated approaches to
select operations considering different multi-criteria prioritization rules, especially in un-
certain environments, can support decision-makers in the continuous improvement of
the production scheduling process in FJS systems, which also contributes to bridging the
existing knowledge gap referring to these applications in the smart factory industry.
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In particular, this study proposed a new framework based on the integration be-
tween the dispatching algorithm and a hybrid MCDM model composed of fuzzy AHP
and TOPSIS methods to reduce the average lateness while simultaneously considering
different job features of common interest for the stakeholders. The proposed DFT approach
was deployed via an innovative four-phase methodology, allowing the companies to un-
derpin the scheduling process, consider the advantages of the dispatching algorithm for
addressing the FJSP and the strengths of the fuzzy multi-criteria approach to prioritize
eligible operations under conditions of uncertainty, and demand changes and high product
differentiation. For the development of this approach, seven criteria from market, financial,
and technical domains were regarded for prioritizing the operations. Specifically, the case
study here presented revealed that DFT outperformed the company’s method (EDD) by
an average of 3.86 days (p-value = 0.005), while prioritizing high-throughput products
for earlier delivery. The managerial and research-level implications of these outcomes
extend previous studies incorporating the use of MCDM as techniques supporting the
implementation of a decision support system (DSS) that facilitates the FJS scheduling
operation in smart manufacturing. Future studies can consider the application of the DFT
model in other FJS environments and other smart manufacturing sectors. On the other
hand, maintenance restrictions and transfer batches can be incorporated to increase the
robustness and applicability in the real manufacturing scenario. Additionally, there are
opportunities to expand the research field upon comparing the DFT model proposed with
other FJS algorithms including recent MCDM techniques like complex proportional assess-
ment (COPRAS), best–worst method (BWM), and intuitionistic fuzzy AHP (IF-AHP) so that
improvements on average lateness and other key performance measures can be achieved.
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Nomenclature

r number of references
n number of jobs
m number of machines
D job quantity
j′ machine associated with the next operation in job route
ri,k,l release time of operation i associated with job k of product reference l
pi,k,l,j processing time of operation i associated with job k of product reference l
f pj time in which the machine j is ready to process a new operation
tbegi,k,l beginning time of operation i associated with job k of product reference l
tendi,k,l end time of operation i associated with job k of product reference l

rpi,k,l, j
earlier ready time of operation i associated with job k of product reference l and
whose execution is to be scheduled in machine j

SUtj setup time in machine j
Tti,k,l transfer time of operation i associated with job k of product reference l
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Appendix A

Table A1. Processing times for each product reference in each machine.

PROCESS Weaving Dyeing Printing Cutting Whipstitching Cleaning

Product/Resource T1 T2 T3 C1 C2 C3 C4 E CT CP1 CP2 LP1 LP2

Single coloured bedcover 164.4 210 204 33.6 36.6 54 36 - 29.4 60 60 25.8 25.8
Single fringe coloured bedcover - - 165 40.2 43.8 64.8 43.2 - 29.4 60 60 25.8 25.8

Stamped single bedcover 164.4 210 204 33.6 36.6 54 36 56.4 29.4 60 60 25.8 25.8
Double coloured bedcover 253.8 - 230.4 66 71.4 106.2 70.8 - 29.4 79.8 79.8 32.4 32.4

Double fringe coloured bedcover - - 394.2 50.4 55.2 81 53.4 - 29.4 79.8 79.8 32.4 32.4
Stamped double bedcover 253.8 - 230.4 66 71.4 106.2 70.8 90 29.4 79.8 79.8 32.4 32.4

Special single coloured bedcover - - 216 33 36.6 53.4 35.4 - 30.6 30 30 25.8 25.8
Special single fringe coloured bedcover - - 162 40.2 43.8 64.2 42.6 - 30.6 30 30 25.8 25.8

Special double coloured bedcover - - 194.4 40.2 43.8 64.2 42.6 - 30.6 30 30 25.8 25.8
Special double fringe coloured bedcover - - 260.4 40.2 43.8 64.2 42.6 - 30.6 30 30 25.8 25.8

Smooth poncho 44.4 - 51.6 - - - - - 7.2 52.2 52.2 84 84
White poncho - 45.6 51.6 - - - - - 7.2 52.2 52.2 84 84
White mulera 256.8 - 298.8 - - - - - 2.4 52.2 52.2 262.2 262.2

Table A2. Demand schedule and characterization of orders in terms of throughput, monthly demand, quantity, due date, DOT, and % of tardiness.

Product Throughput M.D

Jobs

Total % of TardinessJob 1 Job 2 Job 3 Job 4

Units Delivery Date D.O.T. Units Delivery Date D.O.T. Units Delivery Date Units Delivery Date

Single coloured bedcover 0.99 2300 944 15-feb - 945 28-feb - - - - - 1889 0
Single fringe coloured bedcover 0.99 1400 54 25-gen 6 108 25-gen 6 1284 15-feb 1285 28-feb 2731 5.9

Stamped single bedcover 1.33 1203 142 21-gen 10 70 15-feb - 71 28-feb - - 283 50.1
Double coloured bedcover 0.97 1200 174 26-gen 5 877 15-feb - 877 28-feb - - 1928 9.1

Double fringe coloured bedcover 0.62 500 977 15-feb - 977 28-feb - - - - - 1954 0
Stamped double bedcover 1.29 187 24 27-gen 4 36 28-gen 3 64 15-feb 64 28-feb 188 31.9

Special single coloured bedcover 1.01 2042 88 15-feb - 88 28-feb - - - - - 176 0
Special single fringe
coloured bedcover 1.01 305 104 19-gen 12 108 25-gen 6 - - - - 212 100

Special double coloured bedcover 0.76 2042 50 28-feb - - - - - - - - 50 0
Special doublé fringe

coloured bedcover 0.61 309 584 22-gen 9 140 15-feb - 140 28-feb - - 864 67.5

Smooth poncho 1.05 1488 2250 08-feb - - - - - - - - 2250 0
White poncho 1.27 1488 5950 16-feb - - - - - - - - 5950 0
White mulera 0.44 3250 2000 18-feb - - - - - - - - 2000 0
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Table A3. Customer type and order quantity.

Product Reference Quantity (Units) Customer Type

Single colored bedcover 944 4
945 1

Single fringe colored bedcover

54 2
108 2

1284 2
1285 4

Stamped single bedcover
142 2
70 4
71 1

Double colored bedcover
174 4
877 4
877 4

Double fringe colored bedcover 977 1
977 4

Stamped double bedcover

24 3
36 1
64 1
64 2

Special single colored bedcover 88 5
88 5

Special single fringe colored bedcover 104 5
108 5

Special double colored bedcover 50 1

Special double fringe colored bedcover
584 4
140 3
140 2

Smooth poncho 2250 2

White poncho 5950 5

White mulera 200 1

Table A4. Setup times and available resources.

Item Operation (Resources) Setup Time (min)

Single colored bedcover

Weaving (T1, T2, T3) 50
Dyeing (C1, C2, C3, C4) 50

Cutting (CT) 2.5
Whipstitching (CP1, CP2) 5

Cleaning (LP1, LP2) 1

Single fringe colored bedcover

Weaving (T3) 65
Dyeing (C1, C2, C3, C4) 50

Cutting (CT) 2.5
Whipstitching (CP1, CP2) 5

Cleaning (LP1, LP2) 1

Stamped single bedcover

Weaving (T1, T2, T3) 50
Dyeing (C1, C2, C3, C4) 120

Printing (E) 50
Cutting (CT) 2.5

Whipstitching (CP1, CP2) 5
Cleaning (LP1, LP2) 1

Double colored bedcover

Weaving (T1, T3) 90
Dyeing (C1, C2, C3, C4) 60

Cutting (CT) 4
Whipstitching (CP1, CP2) 5.2

Cleaning (LP1, LP2) 1.5
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Table A4. Cont.

Item Operation (Resources) Setup Time (min)

Double fringe colored bedcover

Weaving (T3) 105
Dyeing (C1, C2, C3, C4) 60

Cutting (CT) 4
Whipstitching (CP1, CP2) 5.2

Cleaning (LP1, LP2) 1.5

Stamped double bedcover

Weaving (T1, T3) 90
Dyeing (C1, C2, C3, C4) 60

Printing (E) 70
Cutting (CT) 4

Whipstitching (CP1, CP2) 5.2
Cleaning (LP1, LP2) 1.5

Special single colored bedcover

Weaving (T3) 60
Dyeing (C1, C2, C3, C4) 60

Cutting (CT) 2.5
Whipstitching (CP1, CP2) 5

Cleaning (LP1, LP2) 1

Special single fringe colored bedcover

Weaving (T3) 75
Dyeing (C1, C2, C3, C4) 60

Cutting (CT) 2.5
Whipstitching (CP1, CP2) 5

Cleaning (LP1, LP2) 1

Special double colored bedcover

Weaving (T3) 105
Dyeing (C1, C2, C3, C4) 70

Cutting (CT) 3.5
Whipstitching (CP1, CP2) 5.5

Cleaning (LP1, LP2) 2

Special double fringe colored bedcover

Weaving (T3) 120
Dyeing (C1,C2, C3,C4) 70

Cutting (CT) 3.5
Whipstitching (CP1, CP2) 5.5

Cleaning (LP1, LP2) 2

Smooth poncho

Weaving (T1, T3) 30
Cutting (CT) 1.5

Whipstitching (CP1, CP2) 4.5
Cleaning (LP1, LP2) 1

White poncho

Weaving (T2, T3) 30
Cutting (CT) 1.5

Whipstitching (CP1, CP2) 4.5
Cleaning (LP1, LP2) 1

White mulera

Weaving (T1, T3) 30
Cutting (CT) 1.5

Whipstitching (CP1, CP2) 4.5
Cleaning (LP1, LP2) 1

Table A5. The aggregated matrix of fuzzy comparisons Ã.

F1 F2 F3 F4 F5 F6 F7

F1 [1,1,1] [1,1,1] [0.16,0.2,0.25] [2,3,4] [0.25,0.33,0.5] [0.16,0.2,0.25] [2,3,4]
F2 [1,1,1] [1,1,1] [0.16,0.2,0.25] [2,3,4] [0.16,0.2,0.25] [0.16,0.2,0.25] [2,3,4]
F3 [4,5,6] [4,5,6] [1,1,1] [4,5,6] [1,1,1] [0.16,0.2,0.25] [4,5,6]
F4 [0.25,0.33,0.5] [0.25,0.33,0.5] [0.16,0.2,0.25] [1,1,1] [0.16,0.2,0.25] [0.16,0.2,0.25] [2,3,4]
F5 [2,3,4] [4,5,6] [1,1,1] [4,5,6] [1,1,1] [0.25,0.33,0.5] [4,5,6]
F6 [4,5,6] [4,5,6] [4,5,6] [4,5,6] [2,3,4] [1,1,1] [4,5,6]
F7 [0.25,0.33,0.5] [0.25,0.33,0.5] [0.16,0.2,0.25] [0.25,0.33,0.5] [0.16,0.2,0.25] [0.16,0.2,0.25] [1,1,1]
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Table A6. The geometric means of fuzzy comparisons for job features, fuzzy weights, non-fuzzy weights, and crisp weights.

Criterion Geometric Mean of Fuzzy Comparisons Fuzzy Weight Non-Fuzzy Weight Norm Weight

F1 0.54 0.70 0.89 0.04 0.06 0.10 0.07 0.064
F2 0.50 0.64 0.79 0.04 0.06 0.09 0.06 0.058
F3 1.86 2.24 2.62 0.13 0.20 0.29 0.21 0.200
F4 0.28 0.37 0.50 0.02 0.03 0.06 0.04 0.035
F5 1.78 2.23 2.75 0.12 0.20 0.30 0.21 0.203
F6 3.56 4.59 5.61 0.25 0.41 0.62 0.43 0.414
F7 0.20 0.26 0.35 0.01 0.02 0.04 0.03 0.025

Total 8.73 11.03 13.52 Total 1.03
Reverse 0.11 0.09 0.07

Increasing order 0.07 0.09 0.11

Table A7. The initial decision matrix X in TOPSIS application—1st iteration.

F1 F2 F3 F4 F5 F6 F7

(1,1,1) 944 4 0.990 2300 0 0 5
(1,2,1) 945 1 0.990 2300 0 0 5
(1,1,2) 54 2 0.990 1400 2 6 5
(1,2,2) 108 2 0.990 1400 2 6 5
(1,3,2) 1284 2 0.990 1400 2 0 5
(1,4,2) 1285 4 0.990 1400 2 0 5
(1,1,3) 142 2 1.330 1203 1 10 6
(1,2,3) 70 4 1.330 1203 1 0 6
(1,3,3) 71 1 1.330 1203 1 0 6
(1,1,4) 174 4 0.970 1200 1 5 5
(1,2,4) 877 4 0.970 1200 1 0 5
(1,3,4) 877 4 0.970 1200 1 0 5
(1,1,5) 977 1 0.620 500 0 0 5
(1,2,5) 977 4 0.620 500 0 0 5
(1,1,6) 24 3 1.290 187 2 4 6
(1,2,6) 36 1 1.290 187 2 3 6
(1,3,6) 64 1 1.290 187 2 0 6
(1,4,6) 64 2 1.290 187 2 0 6
(1,1,7) 88 5 1.010 2042 0 0 5
(1,2,7) 88 5 1.010 2042 0 0 5
(1,1,8) 104 5 1.010 305 2 12 5
(1,2,8) 108 5 1.010 305 2 6 5
(1,1,9) 50 1 0.760 2042 0 0 5
(1,1,10) 584 4 0.610 309 1 9 5
(1,2,10) 140 3 0.610 309 1 0 5
(1,3,10) 140 2 0.610 309 1 0 5
(1,1,11) 2250 2 1.050 1488 0 0 4
(1,1,12) 5950 5 1.270 1488 0 0 4
(1,1,13) 2000 1 0.440 3250 0 0 4

C+ 5950 5 1.330 3250 2 10 1
C− 24 1 0.440 187 0 0 6
W 0.064 0.058 0.200 0.035 0.203 0.414 0.025

Norm 7,314,513 17,493 5488 7,462,846 7000 21,977 27,839
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Table A8. The normalized decision matrix R in TOPSIS application—1st iteration.

F1 F2 F3 F4 F5 F6 F7

(1,1,1) 0.129 0.229 0.180 0.308 0.000 0.000 0.180
(1,2,1) 0.129 0.057 0.180 0.308 0.000 0.000 0.180
(1,1,2) 0.007 0.114 0.180 0.188 0.286 0.273 0.180
(1,2,2) 0.015 0.114 0.180 0.188 0.286 0.273 0.180
(1,3,2) 0.176 0.114 0.180 0.188 0.286 0.000 0.180
(1,4,2) 0.176 0.229 0.180 0.188 0.286 0.000 0.180
(1,1,3) 0.019 0.114 0.242 0.161 0.143 0.455 0.216
(1,2,3) 0.010 0.229 0.242 0.161 0.143 0.000 0.216
(1,3,3) 0.010 0.057 0.242 0.161 0.143 0.000 0.216
(1,1,4) 0.024 0.229 0.177 0.161 0.143 0.227 0.180
(1,2,4) 0.120 0.229 0.177 0.161 0.143 0.000 0.180
(1,3,4) 0.120 0.229 0.177 0.161 0.143 0.000 0.180
(1,1,5) 0.134 0.057 0.113 0.067 0.000 0.000 0.180
(1,2,5) 0.134 0.229 0.113 0.067 0.000 0.000 0.180
(1,1,6) 0.003 0.171 0.235 0.025 0.286 0.182 0.216
(1,2,6) 0.005 0.057 0.235 0.025 0.286 0.136 0.216
(1,3,6) 0.009 0.057 0.235 0.025 0.286 0.000 0.216
(1,4,6) 0.009 0.114 0.235 0.025 0.286 0.000 0.216
(1,1,7) 0.012 0.286 0.184 0.274 0.000 0.000 0.180
(1,2,7) 0.012 0.286 0.184 0.274 0.000 0.000 0.180
(1,1,8) 0.014 0.286 0.184 0.041 0.286 0.546 0.180
(1,2,8) 0.015 0.286 0.184 0.041 0.286 0.273 0.180
(1,1,9) 0.007 0.057 0.138 0.274 0.000 0.000 0.180
(1,1,10) 0.080 0.229 0.111 0.041 0.143 0.409 0.180
(1,2,10) 0.019 0.171 0.111 0.041 0.143 0.000 0.180
(1,3,10) 0.019 0.114 0.111 0.041 0.143 0.000 0.180
(1,1,11) 0.308 0.114 0.191 0.199 0.000 0.000 0.144
(1,1,12) 0.813 0.286 0.231 0.199 0.000 0.000 0.144
(1,1,13) 0.273 0.057 0.080 0.435 0.000 0.000 0.144

A+ 0.813 0.286 0.242 0.435 0.286 0.546 0.036
A− 0.003 0.057 0.080 0.025 0.000 0.000 0.216
W 0.064 0.058 0.200 0.035 0.203 0.414 0.025

Table A9. The weighted normalized decision matrix V in TOPSIS application—1st iteration.

F1 F2 F3 F4 F5 F6 F7

(1,1,1) 0.008 0.013 0.036 0.011 0.000 0.000 0.004
(1,2,1) 0.008 0.003 0.036 0.011 0.000 0.000 0.004
(1,1,2) 0.000 0.007 0.036 0.007 0.058 0.113 0.004
(1,2,2) 0.001 0.007 0.036 0.007 0.058 0.113 0.004
(1,3,2) 0.011 0.007 0.036 0.007 0.058 0.000 0.004
(1,4,2) 0.011 0.013 0.036 0.007 0.058 0.000 0.004
(1,1,3) 0.001 0.007 0.048 0.006 0.029 0.188 0.005
(1,2,3) 0.001 0.013 0.048 0.006 0.029 0.000 0.005
(1,3,3) 0.001 0.003 0.048 0.006 0.029 0.000 0.005
(1,1,4) 0.002 0.013 0.035 0.006 0.029 0.094 0.004
(1,2,4) 0.008 0.013 0.035 0.006 0.029 0.000 0.004
(1,3,4) 0.008 0.013 0.035 0.006 0.029 0.000 0.004
(1,1,5) 0.009 0.003 0.023 0.002 0.000 0.000 0.004
(1,2,5) 0.009 0.013 0.023 0.002 0.000 0.000 0.004
(1,1,6) 0.000 0.010 0.047 0.001 0.058 0.075 0.005
(1,2,6) 0.000 0.003 0.047 0.001 0.058 0.057 0.005
(1,3,6) 0.001 0.003 0.047 0.001 0.058 0.000 0.005
(1,4,6) 0.001 0.007 0.047 0.001 0.058 0.000 0.005
(1,1,7) 0.001 0.017 0.037 0.010 0.000 0.000 0.004
(1,2,7) 0.001 0.017 0.037 0.010 0.000 0.000 0.004
(1,1,8) 0.001 0.017 0.037 0.001 0.058 0.226 0.004
(1,2,8) 0.001 0.017 0.037 0.001 0.058 0.113 0.004
(1,1,9) 0.000 0.003 0.028 0.010 0.000 0.000 0.004
(1,1,10) 0.005 0.013 0.022 0.001 0.029 0.170 0.004
(1,2,10) 0.001 0.010 0.022 0.001 0.029 0.000 0.004
(1,3,10) 0.001 0.007 0.022 0.001 0.029 0.000 0.004
(1,1,11) 0.020 0.007 0.038 0.007 0.000 0.000 0.004
(1,1,12) 0.052 0.017 0.046 0.007 0.000 0.000 0.004
(1,1,13) 0.017 0.003 0.016 0.015 0.000 0.000 0.004

A+ 0.052 0.017 0.048 0.015 0.058 0.226 0.001
A- 0.000 0.003 0.016 0.001 0.000 0.000 0.005
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Table A10. Total separation of eligible operations from the ideal scenario—1st iteration.

F1 F2 F3 F4 F5 F6 F7 Si
+

(1,1,1) 0.002 0.000 0.000 0.000 0.003 0.051 0.000 0.238
(1,2,1) 0.002 0.000 0.000 0.000 0.003 0.051 0.000 0.238
(1,1,2) 0.003 0.000 0.000 0.000 0.000 0.013 0.000 0.126
(1,2,2) 0.003 0.000 0.000 0.000 0.000 0.013 0.000 0.125
(1,3,2) 0.002 0.000 0.000 0.000 0.000 0.051 0.000 0.230
(1,4,2) 0.002 0.000 0.000 0.000 0.000 0.051 0.000 0.230
(1,1,3) 0.003 0.000 0.000 0.000 0.001 0.001 0.000 0.071
(1,2,3) 0.003 0.000 0.000 0.000 0.001 0.051 0.000 0.234
(1,3,3) 0.003 0.000 0.000 0.000 0.001 0.051 0.000 0.234
(1,1,4) 0.003 0.000 0.000 0.000 0.001 0.017 0.000 0.145
(1,2,4) 0.002 0.000 0.000 0.000 0.001 0.051 0.000 0.233
(1,3,4) 0.002 0.000 0.000 0.000 0.001 0.051 0.000 0.233
(1,1,5) 0.002 0.000 0.001 0.000 0.003 0.051 0.000 0.240
(1,2,5) 0.002 0.000 0.001 0.000 0.003 0.051 0.000 0.239
(1,1,6) 0.003 0.000 0.000 0.000 0.000 0.023 0.000 0.160
(1,2,6) 0.003 0.000 0.000 0.000 0.000 0.029 0.000 0.178
(1,3,6) 0.003 0.000 0.000 0.000 0.000 0.051 0.000 0.233
(1,4,6) 0.003 0.000 0.000 0.000 0.000 0.051 0.000 0.233
(1,1,7) 0.003 0.000 0.000 0.000 0.003 0.051 0.000 0.239
(1,2,7) 0.003 0.000 0.000 0.000 0.003 0.051 0.000 0.239
(1,1,8) 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.054
(1,2,8) 0.003 0.000 0.000 0.000 0.000 0.013 0.000 0.125
(1,1,9) 0.003 0.000 0.000 0.000 0.003 0.051 0.000 0.240

(1,1,10) 0.002 0.000 0.001 0.000 0.001 0.003 0.000 0.085
(1,2,10) 0.003 0.000 0.001 0.000 0.001 0.051 0.000 0.236
(1,3,10) 0.003 0.000 0.001 0.000 0.001 0.051 0.000 0.236
(1,1,11) 0.001 0.000 0.000 0.000 0.003 0.051 0.000 0.236
(1,1,12) 0.000 0.000 0.000 0.000 0.003 0.051 0.000 0.234
(1,1,13) 0.001 0.000 0.001 0.000 0.003 0.051 0.000 0.239

Table A11. Total separation of eligible operations from the anti-ideal scenario—1st iteration.

F1 F2 F3 F4 F5 F6 F7 Si−

(1,1,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.026
(1,2,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.024
(1,1,2) 0.000 0.000 0.000 0.000 0.003 0.013 0.000 0.129
(1,2,2) 0.000 0.000 0.000 0.000 0.003 0.013 0.000 0.129
(1,3,2) 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.063
(1,4,2) 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.063
(1,1,3) 0.000 0.000 0.001 0.000 0.001 0.035 0.000 0.193
(1,2,3) 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.045
(1,3,3) 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.044
(1,1,4) 0.000 0.000 0.000 0.000 0.001 0.009 0.000 0.101
(1,2,4) 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.037
(1,3,4) 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.037
(1,1,5) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011
(1,2,5) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015
(1,1,6) 0.000 0.000 0.001 0.000 0.003 0.006 0.000 0.100
(1,2,6) 0.000 0.000 0.001 0.000 0.003 0.003 0.000 0.087
(1,3,6) 0.000 0.000 0.001 0.000 0.003 0.000 0.000 0.066
(1,4,6) 0.000 0.000 0.001 0.000 0.003 0.000 0.000 0.066
(1,1,7) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.026
(1,2,7) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.026
(1,1,8) 0.000 0.000 0.000 0.000 0.003 0.051 0.000 0.235
(1,2,8) 0.000 0.000 0.000 0.000 0.003 0.013 0.000 0.129
(1,1,9) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015

(1,1,10) 0.000 0.000 0.000 0.000 0.001 0.029 0.000 0.172
(1,2,10) 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.030
(1,3,10) 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.030
(1,1,11) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030
(1,1,12) 0.003 0.000 0.001 0.000 0.000 0.000 0.000 0.062
(1,1,13) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023
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Table A12. Priority index of eligible operations—1st iteration.

Candidate Operation CC∗i Candidate Operation CC∗i
(1,1,8) 0.8119 (1,3,3) 0.1574
(1,1,3) 0.7312 (1,2,4) 0.1381

(1,1,10) 0.6711 (1,3,4) 0.1381
(1,2,8) 0.5079 (1,2,10) 0.1144
(1,2,2) 0.5066 (1,1,11) 0.1141
(1,1,2) 0.5062 (1,3,10) 0.1125
(1,1,4) 0.4104 (1,1,7) 0.0985
(1,1,6) 0.3848 (1,2,7) 0.0985
(1,2,6) 0.3271 (1,1,1) 0.0978
(1,4,6) 0.2206 (1,2,1) 0.0908
(1,3,6) 0.2203 (1,1,13) 0.0864
(1,4,2) 0.2159 (1,2,5) 0.0577
(1,3,2) 0.2139 (1,1,9) 0.0572

(1,1,12) 0.2093 (1,1,5) 0.0429
(1,2,3) 0.1610

Table A13. Schedule resulting from the DFT algorithm.

Scheduled Operation Machine T. Beginning (min) T. End (min)

(1,1,8) T3 0.0 355.8

(2,1,8) C1 357.8 487.5

(4,1,8) CT 489.5 545.0

(5,1,8) CP1 547.0 604.0

(6,1,8) LP1 606.0 651.7

(1,1,3) T1 0.0 439.1

(2,1,3) C4 441.1 646.3

(3,1,3) E 648.3 831.8

(4,1,3) CT 833.8 905.8

(5,1,3) CP2 907.8 1054.8

(6,1,3) LP2 1056.8 1118.9

(1,1,10) T3 355.8 2368.0

(2,1,10) C1 2370.0 2831.2

(4,1,10) CT 2833.2 3134.6

(5,1,10) CP1 3136.6 3434.1

(6,1,10) LP1 3436.1 3689.2

(1,2,8) T3 2368.0 2734.6

(2,2,8) C1 2736.6 2868.9

(4,2,8) CT 3134.6 3192.2

(5,2,8) CP2 3194.2 3253.2

(6,2,8) LP2 3255.2 3302.6

(1,2,2) T3 2734.6 3096.6

(2,2,2) C1 3098.6 3220.9

(4,2,2) CT 3222.9 3278.3

(5,2,2) CP2 3280.3 3393.3

(6,2,2) LP2 3395.3 3442.8
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Table A13. Cont.

Scheduled Operation Machine T. Beginning (min) T. End (min)

(1,1,2) T3 3096.6 3310.1

(2,1,2) C1 3312.1 3398.2

(4,1,2) CT 3400.2 3429.2

(5,1,2) CP2 3431.2 3490.2

(6,1,2) LP2 3492.2 3516.4

(1,1,4) T1 439.1 1265.1

(2,1,4) C4 1267.1 1532.4

(4,1,4) CT 3429.2 3518.5

(5,1,4) CP1 3520.5 3757.1

(6,1,4) LP2 3759.1 3854.5

(1,1,6) T1 1265.1 1456.6

(2,1,6) C2 1458.6 1547.2

(3,1,6) E 1549.2 1655.2

(4,1,6) CT 3518.5 3534.2

(5,1,6) CP2 3536.2 3573.3

(6,1,6) LP1 3689.2 3703.7

(1,2,6) T1 1456.6 1698.9

(2,2,6) C4 1700.9 1803.4

(3,2,6) E 1805.4 1929.4

(4,2,6) CT 3534.2 3555.9

(5,2,6) CP2 3573.3 3626.4

(6,2,6) LP1 3703.7 3724.6

(1,4,2) T3 3310.1 6908.8

(2,4,2) C1 6910.8 7821.8

(4,4,2) CT 7823.8 8455.9

(5,4,2) CP2 8457.9 9747.9

(6,4,2) LP1 9749.9 10,303.5

(1,3,2) T3 6908.8 10,504.8

(2,3,2) C1 10,506.8 11,417.1

(4,3,2) CT 11,419.1 12,050.8

(5,3,2) CP1 12,052.8 13,341.8

(6,3,2) LP2 13,343.8 13,896.9

(1,4,6) T1 1698.9 2059.6

(2,4,6) C4 2061.6 2197.1

(3,4,6) E 2199.1 2365.1

(4,4,6) CT 12,050.8 12,086.1

(5,4,6) CP2 12,088.1 12,178.4

(6,4,6) LP1 12,180.4 12,216.5

(1,3,6) T1 2059.6 2420.3

(2,3,6) C4 2422.3 2557.9
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Table A13. Cont.

Scheduled Operation Machine T. Beginning (min) T. End (min)

(3,3,6) E 2559.9 2725.9

(4,3,6) CT 12,086.1 12,121.5

(5,3,6) CP2 12,178.4 12,268.8

(6,3,6) LP1 12,270.8 12,306.8

(1,2,3) T2 0.0 295.0

(2,2,3) C3 297.0 480.0

(1,3,3) T2 295.0 593.5

(2,3,3) C3 595.5 779.4

(1,1,12) T2 593.5 5145.5

(1,2,4) T1 2420.3 6220.1

(2,2,4) C4 6222.1 7316.9

(3,2,3) E 2725.9 2841.7

(3,3,3) E 2841.7 2958.4

(1,1,1) T2 5145.5 8499.5

(2,1,1) C4 8499.5 9115.9

(1,3,4) T1 6220.1 10,019.8

(2,3,4) C4 10,021.8 11,116.6

(1,2,1) T2 8499.5 11,857.0

(2,2,1) C2 11,859.0 12,485.5

(1,1,11) T1 10,019.8 11,714.8

(1,2,10) T3 10,504.8 11,078.4

(1,3,10) T3 11,078.4 11,652.0

(2,2,10) C4 11,116.6 11,286.0

(2,3,10) C4 11,654.0 11,823.4

(1,1,7) T3 11,652.0 12,028.8

(2,1,7) C1 12,030.8 12,139.2

(1,1,13) T1 11,714.8 20,304.8

(1,2,7) T3 12,028.8 12,405.6

(2,2,7) C4 12,407.6 12,519.5

(1,1,9) T3 12,405.6 12,672.6

(2,1,9) C1 12,674.6 12,778.1

(4,2,3) CT 12,121.5 12,158.3

(4,3,3) CT 12,158.3 12,195.6

(4,2,4) CT 12,195.6 12,629.3

(5,2,3) CP2 12,268.8 12,343.8

(6,2,3) LP1 12,345.8 12,376.9

(5,3,3) CP2 12,343.8 12,419.8

(6,3,3) LP1 12,421.8 12,453.3

(5,2,4) CP2 12,631.3 13,802.9

(6,2,4) LP1 13,804.9 14,280.0
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Table A13. Cont.

Scheduled Operation Machine T. Beginning (min) T. End (min)

(4,3,4) CT 12,629.3 13,063.0

(1,2,5) T3 12,672.6 19,196.5

(2,2,5) C2 19,198.5 20,157.3

(4,2,10) CT 13,063.0 13,137.9

(4,3,10) CT 13,137.9 13,212.8

(4,1,12) CT 13,212.8 13,928.3

(5,3,4) CP1 13,341.8 14,513.4

(5,2,10) CP2 13,802.9 13,878.4

(5,3,10) CP2 13,878.4 13,953.9

(6,3,4) LP2 14,515.4 14,990.4

(4,1,11) CT 13,928.3 14,199.8

(5,1,12) CP2 13,953.9 19,134.9

(4,1,7) CT 14,199.8 14,247.2

(4,2,7) CT 14,247.2 14,294.6

(6,2,10) LP1 14,280.0 14,342.2

(4,1,1) CT 14,294.6 14,759.6

(6,3,10) LP1 14,342.2 14,404.4

(6,1,12) LP1 19,134.9 27,465.9

(5,1,11) CP1 14,513.4 16,475.4

(4,2,1) CT 14,759.6 15,225.2

(6,1,11) LP2 16,477.4 19,628.4

(4,1,13) CT 20,306.8 20,388.3

(5,1,7) CP1 16,475.4 16,524.4

(5,1,1) CP1 16,524.4 17,473.4

(5,2,7) CP1 17,473.4 17,522.4

(5,2,1) CP1 17,522.4 18,472.4

(5,1,13) CP1 20,390.3 22,134.8

(1,1,5) T3 19,196.5 25,720.4

(2,1,5) C1 25,722.4 26,603.1

(6,1,1) LP2 19,628.4 20,035.3

(6,1,7) LP2 20,035.3 20,074.1

(6,2,7) LP2 20,074.1 20,113.0

(6,2,1) LP2 20,113.0 20,520.3

(4,2,5) CT 20,388.3 20,871.0

(6,1,13) LP2 22,136.8 30,877.8

(5,2,5) CP2 20,873.0 22,177.6

(4,1,5) CT 26,605.1 27,087.8

(5,1,5) CP1 27,089.8 28,394.4

(4,1,9) CT 27,087.8 27,116.8

(5,1,9) CP2 27,118.8 27,149.3

(6,2,5) LP1 27,465.9 27,995.0

(6,1,5) LP1 28,396.4 28,925.5

(6,1,9) LP1 28,925.5 28,949.0
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Table A14. Comparative analysis between DFT and EDD in terms of average lateness.

Test Number
Average Lateness (Days/Order)

Discrepancy (Days)
DFT EDD

1 −2.03 −0.41 −1.62
2 −4.03 −2.60 −1.43
3 1.80 3.76 −1.96
4 −1.91 −0.11 −1.80
5 5.28 8.34 −3.06
6 1.44 5.06 −3.62
7 6.88 11.06 −4.18
8 −0.06 5.53 −5.59
9 8.45 16.12 −7.67
10 0.47 8.19 −7.72

Table A15. Comparative analysis between DFT and EDD in terms of average lateness.

EDD-DFT

N Average Range Range Sum

Negative ranges 0 0.00 0.00

Positive ranges 10 5.50 55.00

Draws 0 Z p-value

Total 10 −2.803 0.005
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