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Abstract 

 
    Activity Recognition Systems - ARS are proposed to 

improve the quality of human life. An ARS uses 

predictive models to identify the activities that 

individuals are performing in different environments. 

Under data-driven approaches, these models are 

trained and tested in experimental environments from 

datasets that contain data collected from heterogeneous 

information sources. When several people interact 

(multi-occupation) in the environment from which data 

are collected, identifying the activities performed by 

each individual in a time window is not a trivial task. In 

addition, there is a lack of datasets generated from 

different data sources, which allow systems to be 

evaluated both from an individual and collective 

perspective. This paper presents the SaMO – UJA 

dataset, which contains Single and Multi-Occupancy 

activities collected in the UJAmI (University of Jaén 

Ambient Intelligence, Spain) Smart Lab. The main 

contribution of this work is the presentation of a dataset 

that includes a new generation of sensors as a source of 

information (acceleration of the inhabitant, intelligent 

floor for location, proximity and binary-sensors) to 

provide an excellent tool for addressing multi-

occupancy in smart environments. 

 

1. Introduction.  

A very high percentage of people use the Home 

Help Service (HHS) in Spain, they are elderly people 

who present a state of frailty or have a significant risk of 

suffering it in the future. HHS is based on the approach  

 

of keeping older people in their usual environment 

for as long as possible, covering those needs that may 

arise from situations of dependency. The HHS offers 

personal help and a series of services at home to people 

who have a certain level of dependency or who suffer a 

personal or family crisis. With this service it is intended 

that this person has an adequate degree of independence 

or autonomy in carrying out activities of daily life. And 

although it is not an exclusive service for the elderly, 

around 90% of the users of it are.  

The basic objective of HHS is to increase personal 

autonomy in the usual way of life, it aims to develop to  

the maximum the possibilities of the elderly person 

to continue controlling their own life, even if it is 

someone who is dependent for certain activities of daily 

life. It is a service that is practically implemented in all 

municipalities, which is well known and highly valued 

by users and their families, and has proven its usefulness 

in guaranteeing the quality of life of the elderly. 

In this proposal we set ourselves the objective of 

deepening the knowledge of the recognition Activities 

of Daily Life (ADL) and Recognition of Human 

Activities (HAR) as a solution that can help the 

monitoring of daily activities at home as a support to 

improve the quality of life of the elderly people. 

The recognition ADL or HAR in assisted living 

indoor environments is an important basic service that 

requires the attention of researchers. From this line of 

research, different functional applications can be found 

that improve elderly people’s quality of life. Therefore, 

as a baseline of research that supports future applied 

developments, it is necessary to recognize ADL in 

indoor environments. 

The scenario becomes much more complex when in 

such environments several inhabitants interact  

simultaneously (multi-resident or multi-occupancy 

environments). Now adays, there are very few multi-
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occupancy datasets and even fewer generated from 

heterogeneous data sources. It is evident that merging 

heterogeneous data sources to obtain data sets is a 

complex task due to the heterogeneity and complexity 

of the data to be integrated [1,2]. Additionally, after a 

thorough review of the state of the art, the existence of 

a dataset that labels activities on two levels of 

granularity (detailed and general) has not been 

evidenced. The SaMO - UJA dataset; proposed in this 

study, presents a solution to these two situations: the 

integration of heterogeneous data and labelling of data 

instances on two levels of granularity. 

The presented datasets will be a key tool to assess 

the performance of activity recognition approaches in an 

experimental context and build and apply models that 

facilitate HAR in real scenarios, seeking to improve 

people’s quality of life. Such models are classified into 

Data-Driven Approaches (DDA) and Knowledge-

Driven Approaches (KDA). Learning techniques are in 

the context of DDA. These approaches use a dataset 

with sensor data streams generated in a smart 

environment [3,37,39, 40]. Expert knowledge are in the 

context of KDA [4,35,36, 38].  These approaches use 

domain knowledge, ontologies or rule-based models to 

perform activity recognition. 

A systematic review of literature on sensor-based 

datasets was presented in [5]. Seven datasets were 

identified as the most widely used in the recognition of 

ADL: VanKasteren [6], CASAS Kyoto [7], CASAS 

Aruba [8], CASAS Multi-resident [9], UCI-HAR [10], 

Opportunity [11] and mHealth [12]. From these, only 

CASAS Aruba and CASAS Multi-resident are multi-

occupancy and the Opportunity dataset is interleaved. In 

[5], a detailed compilation and analysis of the research 

based on the seven aforementioned datasets was 

presented, indicating for each of them: segmentation 

techniques, feature representation, classification, 

feature selection and quality metrics evaluated. 

In this work, we present a multi-occupancy dataset 

called SaMO - UJA, which was collected in the UJAmI 

Smart Lab [34]. This dataset includes a new generation 

of sensors with heterogeneous data sources to provide a 

new point of view on the multi-occupancy problem. 

Concretely, we have included four information sources 

(binary sensors in some objects in the space, proximity 

between the inhabitant and the Bluetooth Low Energy 

(BLE) beacons in the space, acceleration of the 

inhabitant with the wearable device and intelligent floor 

for location) collected using different sensor 

technologies. The SaMO - UJA dataset is integrated by 

a Single-occupancy dataset, with data over 10 days, and 

a Multi-occupancy dataset, with data over 9 days, in 

total integrating 19 days of data collected in three 

sessions per day (morning, afternoon and night). The 

SaMO - UJA dataset contains 25 different types of 

activities grouped into 7 categories. There is a total of 

620 activities (451 multi-occupancy and 169 single-

occupancy). 

This paper is organized into five sections: section 2 

contains related works, section 3 outlines the proposed 

methodology, section 4 describes the process of data 

preparation, Section 5 contains conclusions and future 

works. Finally, the acknowledgments and references are 

presented. 

2. Related research. 

In the work [13], International Conference on 

Ubiquitous Computing and Ambient Intelligence 

UCAmI Cup is presented as a single-inhabitant dataset 

for researchers to analyze HAR using different machine 

learning methods and comparing their results with 

others colleagues. In the 1st UCAmI Cup, 26 authors 

from ten countries obtained the dataset.  

This dataset integrated multiple activities of a 

single inhabitant in a smart lab at the University of Jaén 

(Spain) with a heterogeneous set of devices with 

sensors. The most relevant proposals were based on the 

techniques: bagging classifier [14], finite state machine 

[15], filtered classifier [16], finite automata and regular 

expressions [17], naive Bayes classifier [18] and hidden 

Markov model + definition-based model [19].  

In [14], the dataset was processed using six 

classification methods (Decision Tree (C4.5), 1 Nearest-

Neighbor (1-NN), Support Vector Machine SVM, 

random forest, AdaBoostM1 and bagging), developing 

the Cross Industry Standard Process for Data Mining 

methodology. In this experimentation, the accuracy in 

the recognition of the 24 activities was 92.10% with an 

evaluation model based on 10-fold cross validation. 

However, an accuracy of 60.10% was achieved on the 

test dataset. 

A finite state machine is proposed in [15], carrying 

out activity recognition by means of binary sensor data. 

The presented model obtained a precision of 81.30%. To 

do so, a small subset of operations was used, providing 

an appropriate approach to the resource-constrained 

devices that are common in intelligent environments. 

A method based on fusion was presented in [16], 

fusion is presented both at the feature level and at the 

decision level for heterogeneous sensors by pre-

processing and predicting activities in the context of 

training and test data sets using filtered classifiers. The 

proposed fusion method obtained 94.00% precision for 

training dataset and 47.00% accuracy for test dataset. 

In [17] was presented a method based on the user’s 

behavioral models and activity sensor models in order 

to build weighted finite automata with regular 

expressions. So, the location of the inhabitant was 

obtained for each activity by means of the floor sensor 
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data. This proposal achieved 90.65% precision in the 

test dataset.  

A multi-event naive Bayes method was proposed in 

[18] for recognizing activities in real time. 24 types of 

activities were classified and the results obtained show 

a performance of true positives around 68.00%.  

A hybrid method was presented in [19] that mixes  

a probabilistic model and a definition-based model. The 

probabilistic model is based on Hidden Markov Model 

with a neural network. The results obtained were not 

very promising as they reached an accuracy of 45.05%. 

In our study, we present a new multi-occupation 

dataset that have been carried out in the UJAmI Smart 

Lab of the University of Jaén where a heterogeneous set 

of sensors collect environmental information. 

This new dataset complements the initial dataset 

presented in [13] with new instances of activities that 

are carried out simultaneously by two inhabitants at the 

same time. We shall refer to this integrated dataset as 

the “Single and Multi-Occupation dataset”, which we 

will call SaMO - UJA. Currently the identification of 

ADL in multi-resident indoor environments (also called 

multi-occupancy) has not been widely studied. The best-

known multi-resident datasets are those that have been 

generated from the CASAS project [7] (Aruba [8], Cairo 

[20], Twor [20], Tulum [20] and ADL multi-resident 

[9]) and the ARAS dataset [21]. The ARAS dataset 

implies two datasets generated in two apartments, 

recording data over 1 month for two inhabitants.  

Different studies are described below in which the 

multi-resident dataset of the CASAS family and the 

ARAS dataset have been evaluated, using several 

techniques for activity recognition. For example, a 

classifier based on Red Green Blue (RGB) activity 

image by using a Deep Convolutional Neural Network 

[22], Probabilistic Support Vector Machine [23], a 

method focused on dynamic Bayesian networks [24] 

and Random Forest [2, 25]. In addition, in [26-27] a 

complementary study is presented, which proposes the 

annotation of multi-resident datasets using the Long 

Short Term Memory method. 

A very relevant issue in the recognition of activities 

is the unobtrusive and non-invasiveness of the devices 

in the smart environment [22]. For this reason, the 

authors proposed the use of RGB activity image by 

using the Cairo open dataset offered by the CASAS 

Project. Cairo was generated while two inhabitants with 

a pet were living for 55 days in a smart home. The 

results were very promising due to the fact that they 

reached up to 95.2% accuracy. This required pre-

processing of the data, segmentation of activities and 

multi-conversion of images. 

A method based on windows was presented in [23] 

to classify human activities for multiples inhabitant in 

smart environments.  To do so, the presented methods 

are focused on the study of sensor data stream in order 

to detect the sensors most relevant to each specific 

window. Multiple spatial-temporal statistical features 

were processed to classify human activities. The data set 

used to test the presented method was the CASAS 

dataset (Aruba and Twor) as well as an artificial dataset 

by using the High-Bandwidth Motion Simulator 

(HBMS) simulator. A comparative study was conducted 

using multiple classifiers (SVM, Naive Bayes, logistic 

regression and Recurrent Neural Network (RNN)), the 

best accuracy was 92.0% with the P-SVM classifier with 

the HBMS dataset 

A rule-based method to identify complex activity 

was proposed in [2] in a multi-inhabitant context in 

smart environments. The proposed method was based 

on a multi-label classification technique, using as base 

classifier an extension of the random forest method that 

generated the Enhanced Label Combination method. 

This proposal was tested by using the ADL Multi-

resident dataset from CASAS of Washington State 

University (WSU) [20]. The main advantage of this 

proposal is its capability to address conflicts in the 

complex activity recognition in multi-inhabitant 

contexts with parallel as well as cooperative activities. 

The accuracy obtained reached up to 70.3% in the 

dataset used. Furthermore, a multi-label classifier was 

proposed to recognize the actions and monitoring the 

inhabitant in a multi-occupancy context [1] in the same 

dataset, obtaining 71.7% accuracy. 

A method based on the approaches of multi-task 

learning and zero-shot learning was proposed in [28] to 

address the multi-occupancy context in smart 

environments. To do this, this method considers each 

activity of each inhabitant as a learning action, and 

learns all actions.  

Multiple methods were proposed and compared in 

[21] with the ARAS datasets: Respective method for 

each inhabitant, the Cartesian product and average 

prototype method, Cartesian product and concatenation 

prototype model and, finally, multi-inhabitant with 

Unseen-Activity-Class recognition method with class 

tags, the highest accuracy obtained was 64.27% when 

applying this last method. 

Dynamic Bayesian networks was proposed in [24] 

by using an extension of the Coupled Hidden Markov 

Models. To do so, vertices are added to the model to 

include single activities as well as multi-occupancy 

activities. The proposed method was tested using the 

multi-inhabitant dataset CASAS [7], identifying sensor 

events with associations as well as expert knowledge to 

recognize multiple-resident activities. 

A comparative study is conducted in [25] with 

multi-inhabitant activity datasets: ARAS dataset 

(HouseA and HouseB) [21], Tulum2 dataset and Cairo 

dataset. The best method was the tree ensemble with 
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random forests by means of multi-label learning. The 

methods compared in [23] were evaluated using the 

following four metrics: F-macro, F-micro, hamming 

loss and subset loss. 

The multi-occupancy Aruba dataset was used [26-

27] to propose a Long Short Term Memory model in 

order to perform annotations and identify 

characteristics. The authors proposed the use of multiple 

classical methods: logistic regression, SVM, 

multinomial naive Bayes and, finally, Gaussian naive 

Bayes to classify the activities in the new generated 

dataset. The accuracy achieved was 79.5%. 

On the other hand, an example of feature extraction 

can be by sliding windows [28] is very agile (2.5 s). This 

has been shown to be suitable for evaluating inertia 

activity data and the delay in the response to estimating 

the classification is negligible. The set of features 

extracted from the inertial sensors included maximum 

and minimum values, averages and standard deviation, 

which had proven to be efficient and suitable to describe 

inertial sensors in Activity Recognition (AR) and allow 

the identification and recognition of actions or 

objectives of the inhabitant. 

Most of these studies present datasets, some 

annotated others not, collected from binary sensors and 

proximity sensors. In our proposal, we present and 

evaluate an annotated dataset containing ADL collected 

in a multi-resident environment from four data sources 

(binary sensors in some objects in the space, proximity 

between the inhabitant and the BLE beacons in the 

space, acceleration of the inhabitant with the wearable 

device and intelligent floor for location). This paper 

introduces a novel dataset analysis that includes a new 

generation of sensors as a source of information call 

SaMO. Some of the advantages that can be highlighted 

with respect to our work are: 

• The proposal includes the use of sensors together 

with the definition of a wide range of HAR in multiple 

occupancy conditions. 

• Uses different technologies and sources of 

information, 

• It integrates 30 sensors, 15 BLE beacons, 

wearable devices and Smart Lab Floor with 40 models 

which generate heterogeneous data. 

• Two levels of class labeling are defined for the 

recognition of activities, which allowed the 

identification of 25 types of activities grouped into 7 

categories. 

According to the revised literature, none of them 

generate datasets from four data sources, in addition, 

most of them use binary sensors, accelerometer and 

gyroscope, none of them contain an intelligent floor for 

the location. 

3. Methodology. 

In this proposal, single and multi-occupation 

activities (SaMO – UJA dataset) are integrated in the 

labeled dataset by means of heterogeneous data sources 

generated in the UJAmI Smart Lab of the University of 

Jaén [34]. Four data sources make up the sensor 

information:  

1) Sensor data stream generated by 30 binary sensors 

that were located, categorized into three sensor 

types: wireless magnetic sensor that works with the 

Z-Wave protocol (detecting opening and closing of 

doors, and use of TV remote control, medicine box 

or bottle of water); wireless PIR motion sensor that 

works with the ZigBee protocol (detecting whether 

an inhabitant has moved inside or outside a range 

of 7 meters from the sensor with a sample rate of 5 

seconds) and wireless pressure sensor that works 

with the Z-Wave protocol (detecting pressure when 

the inhabitants use the sofa, chairs or bed). 

2) Location information generated by a set of 15 BLE 

beacons [29] as well as a wearable device worn by 

inhabitants. The BLE beacons model sticker was 

estimated [30] for proximity with a sample 

frequency of 0.25 Hz. The wearable device reads 

the Received Signal Strength Indicator (RSSI) from 

several BLE beacons, to identify the proximity 

between the inhabitant and, for example, a beacon 

located on the toothbrush or the medicine box. 

3) Acceleration data generated from the same 

wearable device. The acceleration of the inhabitant 

data collected through an Android application 

installed on the wearable device [31] of the 

inhabitant with a sample frequency of 50 Hz 

(acceleration data of the inhabitant collected in 

three axes expressed by meter per second squared). 

4) Location data generated by the smart lab floor with 

40 modules that provides location data. SensFloor® 

[32] that consists of a suite of capacitive sensors 

(formed by 40 modules that are distributed into a 

matrix with 4 rows and 10 columns, each module 

composed of eight sensor fields).  

 

Of the seven datasets mentioned above and detailed 

in [5], as the most widely used in the recognition of 

ADL, none are generated from four data sources. Most 

of them are generated from binary sensors, 

accelerometers and gyroscope. None contains an 

intelligent floor for location and although some of them 

mention the use of motion sensors [7-9], there is no 

evidence that they are BLE beacons. Our work features 

the use of these sensors together with the definition of a 

wide range of HAR under multi-occupancy conditions. 
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Figure 1. Applied methodology. 
 

   As indicated in Figure 1, the data were collected and 

debugged, reducing the time in which no relevant 

activities were carried out. For feature representation, a 

sliding window with a fixed size of 30 seconds was 

established. The resulting dataset was randomly 

distributed into two datasets: one for training, with 70%  

of the data instances and another for testing with 30%. 

In order to reduce the amount of data, different feature 

selection techniques were applied within each dataset. 

4. Data preparation. 

Single and multi-occupation datasets were 

collected in the UJAmI SmartLab, the dataset is publicly 

available in https://cutt.ly/qf5MuZw and contain data 

from four sources (acceleration of the inhabitant, 

intelligent floor for location, proximity and binary-

sensors). The single-occupation dataset [13] contains 

246 activity instances collected over 10 days. The 

dataset was divided into two sets: training and test. The 

subset used for training contains 169 instances recorded 

over seven days and the subset used for testing contains 

77 instances recorded over three days. The multi-

occupation dataset contains 451 activity instances 

collected over 9 days. Just like in the single-occupation 

dataset, data was collected for each day in the morning, 

afternoon and evening sessions. Table 1 contains a count 

of activities of the multi-occupation dataset and the 

single-occupation datasets by activity type. 

Table 1. Integration of single/ multi-occupation 
dataset activities – Training set (7 days) 

 

Activity 
Multi-

occupation 
Single Total 

Shower 91 6 97 

Brush teeth 43 21 64 

Use toilet 33 10 43 

Get dressed 17 15 32 

Take medicine 6 7 13 

Dinner 18 7 25 

Lunch 18 6 24 

Breakfast 16 7 23 

Take snack 7 5 12 

Prepare breakfast 15 7 22 

Prepare dinner 12 7 19 

Prepare lunch 14 6 20 

Go home 9 12 21 

Leave home 3 9 12 

Visit in the SmartLab 0 1 1 

Sleep 18 14 32 

Relax on sofa 32 1 33 

Play videogame 29 1 30 

Read book 9 0 9 

Watch TV 28 6 34 

Work at table 8 2 10 

Do dishes 10 2 12 

Put washing machine 

on 
7 6 13 

Take out trash 8 0 8 

Throw waste in bin 0 11 11 

Total 451 169 620 

 

After integrating and debugging the datasets, the 

data instances of the four information sources were 

grouped into sliding windows of 30 seconds. For the 

single-occupation dataset, 1529 instances were 

generated and 3249 for the multi-occupation dataset. 

The activities were grouped by categories, according to 

their affinity and the total activities were calculated by 

category, see Table 2.  
 

Table 2. Description data using a 30 second 
sliding window 

 
     Total 

Catego

ry  
Activities Multi-occup. 

Singl

e-

occu

p. 

Act. 
N

. 

Person

al care 

and 

cleanin

g 

Shower 237 

554 

24 

2

7

3 

261 

8

2

7 

Brush teeth 151 100 251 

Use toilet 76 28 104 

Get dressed 67 84 151 

Take 

medicine 
23 37 60 

Have 

food 

Dinner 146 

473 

127 
3

4

7 

273 
8

2

0 

Lunch 186 110 296 

Breakfast 115 97 212 

Take snack 26 13 39 

Food 

prepara

tion 

Prepare 

breakfast 
94 

371 

66 

2

9

5 

160 

6

6

6 

Prepare 

dinner 
109 84 193 

Prepare 

lunch 
168 145 313 

Out of 

home 

Go home 25 

34 

41 

8

0 

66 
1

1

4 

Leave home 9 35 44 

Visit in the 

SmartLab 
0 4 4 

Acceleration of 

the inhabitant 

Intelligent 
floor for 

location 
Proximity Binary-Sensors 

Integration and debugging 

Sliding window segmentation + Representation features 

Page 1942



Rest 

Sleep 100 

499 

92 2

3

2 

192 7

3

1 
Relax on sofa 399 140 539 

Enterta

inment 

Play 

videogame 
541 

121

8 

30 
2

0

7 

571 1

4

2

5 

Read book 141 0 141 

Watch TV 408 106 514 

Work at table 128 71 199 

Domest

ic 

cleanin

g 

Do dishes 34 

100 

12 

9

5 

46 

1

9

5 

Put washing 

machine on 
29 16 45 

Take out 

trash 
37 0 37 

Throw waste 

in bin 
0 67 67 

Total 3249 1529 4778 

 

For each of the data sources of the dataset, the 

following description feature representation was 

generated in the sliding windows. First, the inhabitant 

acceleration data (see table 3) are structured into 

timestamp, device, X, Y and Z columns. The last three 

correspond to the acceleration measurements in the 

spatial axes. For each of the three axes a feature 

representation was generated from the following 

calculations [33]: arithmetic mean, range, standard 

deviation, skewness and kurtosis.  

Table 3. Excerpt from an acceleration of 
the inhabitant 

 

TIMESTAMP DEV.ID X Y Z 

2018/01/16  

11:13:01.766 
d36b03135c9 -0.36474 -6.83032 10.0050 

2018/01/16 
 11:13:01.767 

d36b03135c9 -1.0990906 -4.79272 8.4983 

2018/01/16 
 11:13:01.768 

d36b03135c9 -0.73965 -3.5930 9.4552 

2018/01/16 

 11:13:01.780 
d36b03135c9 -0.52661 -4.0048 9.4111 

Second, capacitance data (see Table 4) are obtained 

from the intelligent floor for location, by the 

individuals’ interaction with it (see Fig 2). The data are 

structured into timestamp, device and capacitance value. 

As the feature representation for the intelligent floor for 

location data, we include the count of times that each 

tile was activated in the sliding window. 

 

Table 4. Excerpt from an intelligent floor for 
location 

TIMESTAMP 
DEV

. 
CAPACITANCE 

16/01/2018 

11:14:44 
3,04 4 4 

1

5 

2

1 

1

7 

2

0 
2 

1

1 
16/01/2018 

11:14:44 
4,04 0 -2 -1 -1 0 0 4 -1 

16/01/2018 
11:14:44 

1,07 -1 0 -1 -2 1 0 
-

10 
1 

16/01/2018 
11:14:44 

3,04 
-
6. 

4
7 

1
3 

1
7 

1
5 

1
8 

3 7 

          

 

Figure 2. Layout of the intelligent floor for 
location in the UJAmI SmartLab [24]. 

 

 

Third, user proximity to objects and rooms (see 

table 5) was obtained from the Received Signal Strength 

between the wearable device worn by the individual and 

BLE beacon objects. The location of BLE objects within 

the smart lab are shown in the indoor environment (see 

Fig 3). Proximity data is structured into timestamp, 

device ID, ID, object and RSSI columns. RSSI is used 

to generate the feature representation of proximity. The 

features computed from the RSSI of each smart object 

in the sliding window are: arithmetic mean, range and 

standard deviation. 

 

Table 5. Excerpt from a proximity 

 
TIMESTA

MP 
DEVD.ID ID 

OBJE

CT 

RS

SI 

2018/01/16 

11:13:01.929 
130586a1-e1f0-382f- 472c1 BED -93 

2018/01/16 
11:13:07.314 

130586a1-e1f0-382f- b141ab 
FRID
GE 

-99 

2018/01/16 

11:13:12.579 
130586a1-e1f0-382f- 472c18 BED -71 

2018/01/16 

11:13:12.580 
130586a1-e1f0-382f- b141ab 

FRID

GE 
-97 
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Figure 3. Layout of the BLE beacons in the 
UJAmI SmartLab. 

 

Fourth, the data from binary sensors (see Table 6) 

collected in the smart lab identify the interactive events 

between individuals and sensors. 30 binary sensors were 

deployed in the indoor environment (see Fig 4).  

The data from binary sensors is structured into 

timestamp, object and state columns. The possible 

values of the latter depend on sensor type: magnetic 

contact (open or closed), motion (movement or no 

movement) and pressure (pressure or no pressure).  

In order to translate this information into feature 

representation, the count of activations (open, 

movement or pressure) for each object was computed in 

the respective sliding window. 

Table 6. Excerpt from a binary-sensors 

 

TIMESTAMP OBJECT STATE 

2018/01/16 11:12:48.0 SM4 Movement 

2018/01/16 11:13:04.0 SM4 No movement 

2018/01/16 11:13:48.0 SM4 Movement 

2018/01/16 11:13:58.0 SM4 No movement 

2018/01/16 11:13:59.0 SM4 Movement 

2018/01/16 11:14:53.0 C09 Open 

2018/01/16 11:15:05.0 C09 Close 

 

Figure 4. Layout of the binary sensors in the 
UJAmI SmartLab. 

 
Following, we describe the id sensors with the 

objects that are illustrated in Figure 4: M01 Door, TV0 

TV, SM1 Motion sensor–Kitchen, SM3 Motion sensor–

bathroom, SM4 Motion sensor–bedroom, SM5 Motion 

sensor–sofa, D01 Refrigerator, D02 Microwave, D03 

Wardrobe, D04 Cupboard cups, D05 Dishwasher, D07 

Top WC, D08 Closet, D09 Washing machine, D10 

Pantry, H01 Kettle, C01 Medication box, C02 Fruit 

platter, C03 Cutlery, C04 Pots, C05 Water bottle, C07 

Remote XBOX, C08 Trash, C09 Tap, C10 Tank, C12 

Laundry basket, C13 Pyjamas drawer, C14 Bed, C15 

Kitchen faucet and, finally, S09 Pressure sofa 

The integration of several data sources, through the 

timestamp field, allowed us to generate the fixed time 

windows and the feature representation generated from 

the raw features. The resulting SaMO – UJA dataset has 

4778 data instances with 134 features, identifying the 

category as the class criterion (see Table 7). 
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Table 7. Dataset structure - feature representation of the SaMO – UJA dataset 
 

Sources 
Raw 

features 
Generated features Description 

All Timestamp Time 

Window set in 30 

seconds 

(one feature) 

Acceleration 

of the 

inhabitant 

X, Y and Z 
Xmean, Xrank, Xstd, Xskew, Xkur, Ymean, Yrank, Ystd, Yskew, 

Ykur, Zmean, Zrank, Zstd, Zskew and Zkur. 

Arithmetic Mean, 

range, standard 

deviation, Skewness 

and kurtosis 

(15 features) 

Intelligent 

floor for 

location 

Device 

F1_1, F1_2, F1_3, F1_4, F1_5, F1_6, F1_7, F1_8, F1_9, F1_10, 

F2_1, F2_2, F2_3, F2_4, F2_5, F2_6, F2_7, F2_8, F2_9, F2_10, 

F3_1, F3_2, F3_3, F3_4, F3_5, F3_6, F3_7, F3_8, F3_9, F4_1, 

F4_2, F4_3, F4_4, F4_5, F4_6, F4_7, F4_8, F4_9, F5_6 and 

F5_7. 

Counting by contact 

with tile (40 features) 

Proximity 
Object, 

RSSI 

1_Book_mean, 1_Book_rank, 1_Book_std, 

2_TV_controller_mean, 2_TV_controller_rank, 

2_TV_controller_std,3_Entrance_door_mean, 

3_Entrance_door_rank, 

3_Entrance_door_std,4_Medicine_box_mean, 

4_Medicine_box_rank, 4_ 

Medicine_box_std,5_Food_cupboard_mean, 5_ 

Food_cupboard_rank, 5_ Food_cupboard_std, 6_Fridge_mean, 

6_Fridge_rank, 6_Fridge_std, 7_Pot_drawer_mean, 

7_Pot_drawer_rank, 7_Pot_drawer_std, 8_Water_bottle_mean, 

8_Water_bottle_rank, 8_Water_bottle_std, 

9_Garbage_can_mean, 9_Garbage_can_rank, 

9_Garbage_can_std, 

10_Wardrobe_door_mean, 10_Wardrobe_door_rank, 

10_Wardrobe_door_std, 11_Pyjamas_drawer_mean, 

11_Pyjamas_drawer_rank, 11_Pyjamas_drawer_std, 

12_Bed_mean, 12_Bed_rank, 12_Bed_std, 

13_Bathroom_tap_mean, 13_Bathroom_tap_rank, 

13_Bathroom_tap_std, 14_Toothbrush_mean, 

14_Toothbrush_rank, 14_Toothbrush_std, 

15_Laundry_basquet_mean, 15_Laundry_basquet_rank and 

15_Laundry_basquet_std. 

Arithmetic Mean, 

range and standard 

deviation by object 

(45 features) 

 

Binary 

sensors 

Object, 

state 

M01, TV0, SM1, SM3, SM4, SM5, D01, D02, D03, D04, D05, 

D07, D08, D09, D10, H01, C01, C02, C03, C04, C05, C07, C08, 

C09, C10, C12, C13, C14, C15 and S09. 

Count by object 

(30 features) 

 Inhabitant  One feature 

 Activity Category and activity Two features 

Total 134 features 

5. Conclusions. 

   This paper presented the SaMO – UJA dataset, which 

contains Single and Multi-Occupancy activities, 

collected in the UJAmI Smart Lab of the University of 

Jaén (Spain) from different sensor technologies and 

information sources: binary sensors in some objects in 

the space, proximity between the inhabitant and the BLE 

beacons in the space, acceleration of the inhabitant with 

the wearable device and intelligent floor for location.  

 

 

 

 

   The SaMO - UJA dataset has two levels of class la 

belling for the identification of activities: a level with 

greater granularity called activity (shower, brush teeth, 

use toilet, get dressed and take medicine, among others), 

which allows us to represent a total of 25 different types 

of activities, and a more general level called category 

(personal care and cleaning, have food and food 

preparation, among others), which groups the 

aforementioned activities into seven major categories.       
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Our future works are focused on presenting different 

models for learning HAR based on the sensor 

information and features described in the previous 

section. In order to evaluate the impact of different 

configurations in machine learning methods, we 

developed several case studies with the SaMO – UJA 

dataset. 
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