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Abstract

Background: High-throughput sequencing enables the analysis of the composition
of numerous biological systems, such as microbial communities. The identification of
dependencies within these systems requires the analysis and assimilation of the
underlying interaction patterns between all the variables that make up that system.
However, this task poses a challenge when considering the compositional nature of
the data coming from DNA-sequencing experiments because traditional interaction
metrics (e.g., correlation) produce unreliable results when analyzing relative fractions
instead of absolute abundances. The compositionality-associated challenges extend
to the classification task, as it usually involves the characterization of the interactions
between the principal descriptive variables of the datasets. The classification of new
samples/patients into binary categories corresponding to dissimilar biological
settings or phenotypes (e.g., control and cases) could help researchers in the
development of treatments/drugs.

Results: Here, we develop and exemplify a new approach, applicable to compositional
data, for the classification of new samples into two groups with different biological settings.
We propose a new metric to characterize and quantify the overall correlation structure
deviation between these groups and a technique for dimensionality reduction to facilitate
graphical representation. We conduct simulation experiments with synthetic data to assess
the proposed method’s classification accuracy. Moreover, we illustrate the performance of
the proposed approach using Operational Taxonomic Unit (OTU) count tables obtained
through 16S rRNA gene sequencing data from two microbiota experiments. Also, compare
our method’s performance with that of two state-of-the-art methods.

Conclusions: Simulation experiments show that our method achieves a classification
accuracy equal to or greater than 98% when using synthetic data. Finally, our method
outperforms the other classification methods with real datasets from gene sequencing
experiments.

Keywords: Microbial communities, Compositional nature, Classification method, 16 rRNA
sequencing
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Background
Microorganisms living inside and on humans are known as the microbiota. When inte-

grated with their genes’ information, it is known as the microbiome. The Human

Microbiome Project (HMP) was an endeavor for the characterization of the human

microbiota to further understanding its impact on human health and diseases [1].

In recent years, biological sciences have experienced substantial technological ad-

vances that have led to the rediscovery of systems biology [2–4]. These advances were

possible thanks to the technological ability to completely sequence the genome from

any organism at a low cost [5, 6]. Such advances triggered the development of various

analytic approaches and technologies to simultaneously monitoring all the components

within cells (e.g., genes and proteins). With the genome information and analytic tech-

nologies, the mining and exploration of the resulting data opened up the possibility to

better understand biological systems, such as microbial populations, and their complex-

ity. The network structure of such biological systems can give insight into the under-

lying interactions taking place within those systems [7–10]. Furthermore, the

understanding of these interactions can lead to the discovery of new methods that can

help physicians, biologists, scientists, and healthcare workers with disease diagnosis,

gene identification, classification of new data, and many other tasks [11].

We initially conducted a literature search in different medical, biological, and engin-

eering databases as well as academic sites prestigious journals such as BMC Bioinfor-

matics, PLOS ONE, ScienceDirect, and IEEE Xplore using the queries “correlation

structure for gene expression classifications,” “classifiers for compositional data,” and

“classifiers based on correlation structures” in order to identify papers in English using

procedures for sample classification based on correlation structures in the 2009–2019

time window. Figure 1 shows the evolution of the number of publications retrieved

when the keywords “correlation structure for gene expression classifications” are used.

Publications were retrieved from several academic sites, namely BMC Bioinformatics,

PLOS One, ScienceDirect, and Scopus. Figure 2 summarizes the current principal

stages of gene expression analysis for sample classification.

Operational Taxonomic Unit (OTU) count tables are the usual output when process-

ing the 16S rRNA sequences of microbiota samples [12]. These tables show the relative

abundances of the bacteria that make a microbiota population (e.g., the human gut

microbiota). OTU-based data have a compositional nature, which makes them difficult

to work with [13, 14]. Thus, data transformation is required prior to any further

analysis.

Aitchison [15] proposed two transformations to compensate for the data’s composi-

tionality, thus allowing the use of standard metrics in further analysis. The first trans-

formation is the additive log-ratio (alr), which is defined as:

alr xð Þ ¼ ln
x1
x j

;…; ln
x j−1

x j
; ln

x jþ1

x j
; ln

xn
x j

� �
ð1Þ

where xj is an element of {x1, x2, x3…, xn}. Because one value xj is selected as the de-

nominator to build the log-ratios, the alr has been criticized as being subjective since

the outcome depends mostly on the value of xj selected [15–18].

The second transformation proposed by Aitchison is the centered log-ratio (clr),

which is defined as:
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clr xð Þ ¼ ln
x1
g xð Þ ; ln

x2
g xð Þ ;…; ln

xn
g xð Þ

� �
ð2Þ

where gðxÞ ¼ ðQn
i¼1xiÞ

1
n is the geometric mean. The use of g(x) avoids the subjectivity

of the alr transformation since the method is taking all the information of x [15–19].

The clr transformation has proven to be reliable and has been extensively used in the

scientific literature over the years to analyze microbiome data.

In [20] authors proposed a transformation called the isometric log-ratio (irl) trans-

formation. This approach takes any compositional data x ∈ SN, and computes ilr(x) =

z = [z1, z2,…, zN], where zi is calculated as:

zi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−i

N−iþ 1
ln

xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQN
j¼iþ1x j

N−i

q
0
B@

1
CA;

vuuuut i ¼ 1; ::;N : ð3Þ

Fig. 1 Evolution of the number of publications per year from 2009 to 2019

Fig. 2 Scheme of gene analysis used for sample classification
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However, implementing the ilr transformation poses serious practical difficulties for

high-dimension data as the computational complexity increases rapidly with dimen-

sionality [21].

Feature selection

After transforming the data, the next step is to separate the data into train, test, and

validation sets, although in some cases only the train and test sets are considered. One

of the most common problems prior to that step is the limitation of the number of data

samples. Indeed, for a normal classifier to be employed using multivariate metrical

techniques, the sample size required for optimum training is in order of thousands.

This is known as the “curse of dimensionality” problem, and the usual way to overcome

this limitation is by using a dimensionality reduction technique to collapse all the attri-

butes (variables) into a lower-dimension space where the most dominant information

of the dataset can be retrieved [13, 22].

Feature selection methods are usually separated into three categories: filter, wrapper,

and embedded. Table 1 summarizes different approaches for feature selection in gene

expression data, the most relevant categories for feature selection, and the current

weaknesses when analyzing gene expression data. Filter methods can work with univar-

iate and multivariate data, where univariate methods focus on each feature separately

and multivariate methods focus on finding relationships between features [23, 24]. Here

we only consider multivariate methods.

The abovementioned filter methods tend to be computationally efficient. Wrapper

methods, on the other hand, tend to have a better performance in selecting features

since they take a model hypothesis into account, meaning that a training and testing

procedure is made in the feature space. However, this approach is computationally inef-

ficient and is more problematic as the feature space grows [23, 26, 29, 30]. Embedded

methods make the feature selection based on the classifier (i.e., selected features might

not work with any other classifier) and hence tend to have a better computational per-

formance than wrappers. This is the case because the optimal set of descriptors is built

when the classifier is constructed and the feature selection is affected by the hypotheses

made by the classifier [23, 26, 29–31].

In [14], authors presented SParse InversE Covariance Estimation for Ecological ASso-

ciation Inference (SPIEC-EASI), a novel strategy to infer networks from a high dimen-

sional community compositional data. SPIEC-EASI estimates the interaction graph

from the transformed data using either Recursive Feature selection or Sparse Inverse

Covariance selection and seeks to infer an underlying graphical model using conditional

independence. In [32] authors proposed a modification of the Support Vector Machine

Table 1 Summary of feature selection approaches in gene expression analysis

Category Description Weaknesses References

Filter - Extract features from the data without
any type of learning involved.

- Ignore interaction with the classifier. [13, 23, 25–30]

Wrapper - Use learning approaches to evaluate
which features are useful.

- Risk of overfitting.
- Classifier dependent selection.

[23, 26, 29, 30]

Embedded - Combine the traditional feature selection
step with the classifier construction.

- Classifier dependent selection. [23, 26, 29–31]

Racedo et al. BioData Mining           (2021) 14:31 Page 4 of 18



– Recursive Feature Elimination (SVM-RFE) algorithm for feature selection. SVM-RFE

removes one irrelevant feature at each iteration, but this can be troublesome when the

number of features is large. Thus, its modification, namely Correlation based Support

Vector Machine – Recursive Multiple Feature Elimination (CSVM-RMFE), finds the

correlated features and removes more than one irrelevant feature per iteration. Rao and

S. Lakshminarayanan [13] presented a new significant attribute selection method based

on the Partial Correlation Coefficient Matrix (PCCM).

Classification

The final step after finding the most relevant features of the transformed data is to se-

lect a classifier. In clinical and bioinformatic research, prediction models are extensively

used to derive classification rules useful to accurately predict whether a patient has or

would develop a disease, whether the treatment is going to work, or even whether a

disease would recur [33–35]. Table 2 summarizes the relevant aspects of some widely

used classifiers.

Depending on the data, a classifier can belong to one of two groups: supervised or

unsupervised [36]. In supervised classification (learning), samples are labeled according

to some a priori-defined classes or categories, whereas in unsupervised learning, sam-

ples are not labeled, and the classifier clusters the data into different classes or categor-

ies after maximizing or minimizing a set of criteria.

Dembélé and Kastner [37] presented a new Fold Change method that can detect dif-

ferentially expressed genes in microarray data. The traditional fold change method

works by calculating the ratio between the averages from the samples (usually two

different biological conditions, e.g., control and case samples). Then, cutoff values (e.g.,

0.5 for down- and 2 for up-regulated) are used to select genes under/above such

thresholds. This new approach is more accurate and faster than the traditional method

and can assign a metric to each differentially expressed gene, which can be used as a se-

lection criterion.

Belciug and F. Gorunescu [43] proposed a novel initialization of a single hidden layer

feedforward neural network’s input weights using the knowledge embedded in the

connections between variables and class labels. The authors expressed this by the non-

parametric Goodman-Kruskal Gamma rank correlation instead of the traditional ran-

dom initialization. The use of this correlation also helped to increase computational

speed by eliminating unnecessary features based on the significance of the rank correl-

ation between variables and class labels.

Table 2 Summary of classifiers used in gene expression analysis

Category Classifier References

Metrical and
classical

- Probabilistic: Bayesian classifier, probabilistic linear discriminant analysis.
- Non probabilistic: Support Vector Machine (SVM), SVM-RFE, Nearest-neighbor
(NN), linear discriminant analysis.

[13, 37–41]

Artificial
Intelligence

- Fuzzy Logic, Genetic Algorithms, Classification and Regression trees. [13, 38, 39,
42, 43]

Boosting - LogitBoost, AdaBoost.M1, GradientBoosting (GrBoost) [13, 14, 38,
39, 44]
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In [42], authors proposed a framework to find information about genes and to

classify gene combinations belonging to its relevant subtype using fuzzy logic,

which adapts numerical data (input/output pairs) into human linguistic terms, of-

fering good capabilities to deal with noisy and missing data. However, defining the

rules and membership functions might require a lot of prior knowledge from a hu-

man expert [41]. Dettling and P. Bühlmann [44] proposed a boosting method com-

bining a dimensionality reduction step with the LogitBoost algorithm [45] and

compared it to AdaBoost.M1 [46], the nearest neighbor classifier [47], and classifi-

cation and regression trees (CART) using gene expression data [48]. Dettling and

P. Bühlmann showed that, for low dimensional data, LogitBoost can perform

slightly better than AdaBoost.M1, and that for real high dimensional data, their ap-

proach can outperform the other classifiers in some cases.

In this paper, we present a new method to classify samples into two groups with dif-

ferent characteristics (i.e., phenotypes, health condition, among others) when data of

compositional nature is available. Our method relies on a new metric to quantitatively

characterize the overall correlation structure deviation when comparing the two data-

sets and a new dimensionality reduction approach. The proposed method is assessed

and compared, based on classification accuracy, to two state-of-the-art methods using

both synthetic datasets and real datasets from RNA-16s sequencing experiments.

Proposed classification method
Here, we explain in detail the proposed classification method. First, in section “Data

pretreatment”, we introduce the Data Pretreatment stage, and in section “Assessing

correlation structure distortion”, a novel metric to be used as the metric to assess cor-

relation structure distortion is described. Finally, in section “Dimensionality reduction

technique”, we present the proposed classification rule, which is based on the previ-

ously defined metric and a proposed dimensionality-reduction approach to assess the

disruption of a dataset’s correlation structure after a new sample is included.

Data pretreatment

Let Xρ
c∈ℝ

nc�m and Xρ
v∈ℝ

nv�m be the OTU count tables where m features are assessed

in nc and nv samples from control and case individuals, respectively. In the expressions

above, the superindex ρ indicates the datasets are ‘raw’ or without pretreatment. From

now on, Xρ
g will represent any of the two groups (g = c for control, or g = v for case).

When analyzing OTU counts tables, a log-ratio transformation, such as the clr, is to

be applied [15, 18, 19] before estimating correlations. However, in order to apply the

log-ratio transformation, it is necessary to consider that compositional count datasets

may contain null values resulting from insufficiently large or non-existing samples. As

log-ratio transformations require data with exclusively positive values, the use of a

zero-replacement method is a must. Here we use the Bayesian-multiplicative (BM) al-

gorithm proposed by Martín-Fernández [49]. Let xpi ∈ℝ1 ×m be the i-th row of the

matrix Xρ
g (i = 1, 2,…, ng). The BM algorithm replaces the null counts by
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BM xpi; j

� �
¼

ti; j
si

nþ si

� �
; if xpi; j ¼ 0

xpi; j 1−
X

∀k jxpi; j¼0

ti;k
si

nþ si

� �0
@

1
A; if xpi; j≠0

8>>>><
>>>>:

ð4Þ

When using the Bayes-Laplace prior, we set n ¼ Pm
j¼1

xpi; j , ti, j =m−1 and si =m. Let

XBM
g ≔BMðXρ

gÞ be the resulting matrix after the BM algorithm is applied row-wise to Xρ
g

.

To ensure the data’s compositionality on XBM
g , a closure operation [15, 18, 19] is ap-

plied to every row of XBM
g , as follows:

c xBMpi

� �
¼ kXm

j¼1

xBMpi; j

xBMpi ð5Þ

where k is an arbitrary constant (usually k = 100). Let XBM;c
g ≔cðBMðXρ

gÞÞ be the result-

ing matrix after the BM algorithm and the closure operation have been applied. Now,

the clr transformation is applied to each vector xp ∈ℝ
1 × n XBM;c

g , as

clr xp
	 
 ¼ ln

x1
g xp
	 
 ; ln

x2
g xp
	 
 ;…; ln

xn
g xp
	 


" #
ð6Þ

where gðxpÞ ¼ ðQn
i¼1xiÞ

1
n is the geometric mean. Hence,

Xg ¼ clr c BM Xρ
g

� �� �� �
ð7Þ

Finally, a normalization is applied, resulting in:

Xgnorm ¼ Xg−Ing b
T
g

� �
Σ−1
g ð8Þ

where Ig ¼ ½1 1…:1�∈ℝng�1 is a column vector of ones, bg∈ℝng�1 is a column vector that

contains the means of all the variables in Xg, and Σg ∈ℝ
m ×m is a diagonal matrix that

contains the standard deviation (σgi , for i = 1, …, m) of all variables.

Assessing correlation structure distortion

Here, we introduce φ, a new metric to quantitatively assess the distortion in the correl-

ation structure of a dataset after the incorporation of a new sample. The Pearson cor-

relation matrix for Xg is calculated as follows [50]:

Sg ¼ 1
ng−1

XT
gnorm

Xgnorm ð9Þ

Now, consider a new sample, xp ∈ℝ
1 ×m. The pretreatment step for this sample

yields:

xp ¼ clr c BM xp
	 
	 
	 
 ð10Þ
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Let ~Xgℝ
ng�m be the (augmented) dataset Xg after incorporating the new sample, and

let Sg and ~Sg be the correlation matrices for Xg and ~Xg , respectively. The spectral de-

composition for these matrices is

Sg ¼ VgΛgV
T
g ;

~Sg ¼ ~Vg
~Λg ~V

T
g ð11Þ

where

Λg ¼
λg1

⋱
λgm

2
4

3
5∈ℝm�m; ~Λg ¼

~λg1
⋱

~λgm

2
4

3
5∈ℝm�m ð12Þ

are diagonal matrices containing the eigenvalues for Sg and ~Sg . Let Vg ¼
vg1 vg2 ⋯ vgm

� �
∈ℝm�m and ~Vg ¼ ~vg1 ~vg2 ⋯ ~vgm

� �
∈ℝm�m be the eigenvector

matrices of Sg and ~Sg . Figure 3a illustrates, in a 2-dimensional example, the datasets Xg

and ~Xg . Figure 3b illustrates the datasets after carrying out the pre-treatment, along

with their eigenvectors (which are unitary) scaled by their corresponding eigenvalues

obtained from the spectral decompositions. Note that scaled eigenvectors mark out the

directions of largest variability, capturing high order interactions between the OTUs

ruling the overall association structure. Therefore, looking at deviations in both the

magnitude and direction of those scaled eigenvectors must give insightful information

on overall changes in the association structure of a microbiota population.

Based on the abovementioned remarks, we introduce φ to characterize the distortion

produced in the underlying correlation structure when two OTU counts datasets are

compared. This metric first requires a dimensional reduction, which will be performed

by selecting the principal components for each sample group. This procedure, inte-

grated within the Principal Component Analysis (PCA) algorithm [25], consists of find-

ing the minimum number of eigenvalues ag or ~ag (for Xg and ~Xg , respectively) that

explain 100(1 − α)% of the total variance, i.e.:

Fig. 3 Bidimensional representation of datasets ~Xg and Xg a without pretreatment, and b after the
pretreatment along with the eigenvectors scaled by the corresponding eigenvalues

Racedo et al. BioData Mining           (2021) 14:31 Page 8 of 18



Xag
i¼1

λgi

Xm
i¼1

λgi

≤ 1−αð Þ;

X~ag
i¼1

λgi

Xm
i¼1

λgi

≤ 1−αð Þ ð13Þ

Thus, φ is defined as

φ ¼
Xmax ag ;~agð Þ

j¼1

max λg j
; ~λg j

n o
λg j

−~λg j

� �
cos−1 vTg j

~vg j

� �h i
ð14Þ

where ðλg j
−~λg j

Þ is the algebraic difference (magnitude deviation) of the j-th eigenvalues

in Λg and ~Λg , cos−1ðvTg j
~vg j

Þ computes angular deviation between the j-th eigenvectors

in Vg and ~Vg , and maxfλg j
; ~λg j

g provides a weighting factor so that the contribution of

the j-th deviation to the index φ is proportional to the relative importance among prin-

cipal components.

Dimensionality reduction technique

Now that we have a metric to measure the distortion caused in the correlation struc-

ture of the g group after the incorporation of a new sample, we could then infer to

which group the new sample would belong, providing a classification criterion based

on how distorted the correlation structure is when incorporating xp. The intuitive way

of approaching the evaluation of the distortion would be to integrate xp into Xg and

(re)calculate the correlation matrix for the further evaluation of its distortion. However,

considering that the g group may contain many samples, a single new sample may not

be enough to generate a significant distortion in the correlation structure. Furthermore,

if the number of samples in the groups is unbalanced, the distortion caused by the in-

clusion of a new sample may not be comparable.

An approach to overcome this dimensional problem is to randomly subsample a

small number of rows in Xg, combining them with xp, and then calculating the distor-

tion caused. This approach, however, would not include a considerable amount of in-

formation, which is contained in the rows that were left out. To address this issue, we

propose a new dimensionality reduction approach that allows a weighted assessment of

the distortion in Sg caused by the integration of a new sample xp. This approach will

use all the information contained in the original data, with the objective of providing a

classification algorithm for any upcoming sample.

The first step of the proposed approach is to find an expression for the distorted cor-

relation matrix that reveals the natural weights of the contributions of Xg and xp to the

make-up of the new correlation structure. Suppose that the data is concatenated as:

~Xg ¼ Xg

xp

� �
ℝ~ng�m ð15Þ

where ~ng ¼ ng þ 1 is the number of rows of ~Xg . Combining Eqs. (15) and (8) yields

~Xg ¼ XgnormΣg þ Ing b
T
g

xp

� �
ð16Þ

Normalizing ~Xg produces
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~Xgnorm ¼ ~Xg−I~ng~b
T
g

� �
~Σ
−1
g ¼ XgnormΣg−IngΔb

T
g

� �
~Σ
−1
g

xpnorm

" #
ð17Þ

where ~bg is the vector that contains the means of ~Xg , ~Σg is a diagonal matrix that con-

tains the distorted standard deviations, Δbg≔~bg−bg is the distortion in the mean vector,

and xpnorm ¼ ðxp−~bTg Þ~Σ
−1
g . Both ~bg and ~Σg are unknown. Thus, we need to derive expres-

sions for them. The distorted means vector is calculated as ~bg ¼ 1
~ng

~Xg
T
I~ng

, which can

be converted into:

~bg ¼ ng
ng þ 1

bg þ 1
ng þ 1

xTp ð18Þ

Equation (18) shows that the natural weights are w1 ¼ ng
ngþ1 and w2 ¼ 1

ngþ1 for bg and

xp, respectively. To find an expression for the diagonal matrix of distorted standard de-

viations, ~Σg , a column-wise subtraction of the mean vector for ~Xg is performed:

~Xgmean−centered
¼ ~Xg−I~ng~b

T
g ¼ Xg−Ing~b

T
g

xp−~b
T
g

" #
ð19Þ

Adding and subtracting Ing b
T
g to Xg−Ing~b

T
g in Eq. (19) yields:

~Xgmean−centered
¼ Xg−Ing b

T
g

� �
−IngΔb

T
g

xp−~b
T
g

2
4

3
5 ð20Þ

where

~Xgmean−centered
:; ið Þ ¼ Xg :; ið Þ−bg ið ÞIng

	 

−Δbg ið ÞIng

xp ið Þ−~bg ið Þ
� �

ð21Þ

is the i-th column of ~Xgmean−centered
ð:; iÞ, the corresponding i-th variable. Then, the variance

of this i-th variable will be ~σ2
gi
¼ 1

~ng−1
ð~Xgmean−centered

ð:; iÞÞT ~Xgmean−centered
ð:; iÞ , which can be

written as:

~ng−1
	 


~σ2gi ¼ XT
g :; ið Þ−bg ið ÞITng

� �
−Δbg ið ÞITng xp ið Þ−~bg ið Þ

h i
� Xg :; ið Þ−bg ið ÞIng

	 

−Δbg ið ÞIng

xp ið Þ−~bg ið Þ
� �

ð22Þ

Equation (22) can be further expanded as:

~ng−1
	 


~σ2gi ¼ XT
g :; ið Þ−bg ið ÞITng

� �
Xg :; ið Þ−bg ið ÞIng
	 


− XT
g :; ið Þ−bg ið ÞITng

� �
Δbg ið ÞIng

−Δbg ið ÞITng Xg :; ið Þ−bg ið ÞIng
	 
þ Δb2c ið ÞITng Ing þ xp ið Þ−~bg ið Þ	 
2

ð23Þ

Notice that, in this expression, the terms ðXT
g ð:; iÞ−bgðiÞITng ÞðXgð:; iÞ−bgðiÞIng Þ ¼ ðng−1

Þσ2gi , ITng Ing ¼ ng , and ðXT
g ð:; iÞ−bgðiÞITng ÞΔbgðiÞIng ¼ ΔbgðiÞITng ðXgð:; iÞ−bgðiÞIng Þ . Then,

Eq. (23) can be reduced to:
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~ng−1
	 


~σ2gi ¼ ng−1
	 


σ2gi−2Δbg ið ÞITng Xg :; ið Þ−bg ið ÞIng
	 
þ ngΔb

2
g ið Þ

þ xp ið Þ−~bg ið Þ	 
2 ð24Þ

Considering that ~ng ¼ ng þ 1 and ITngXgð:; iÞ ¼ ITng ðbgðiÞIng Þ ¼ ngbgðiÞ, it follows that

~σgi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ng−1

ng
σ2gi þ Δb2g ið Þ þ 1

ng
xp ið Þ−~bg ið Þ	 
2s

ð25Þ

From Eq. (25), notice that the (distorted) variances of the variables of the group ~Xg

depend on: (1) the original variances in Xg, with natural weight ng−1
ng

; (2) the quadratic

(mean centered) values of the new sample, ðxpðiÞ−~bgðiÞÞ2 , with natural weight 1
ng
; and

the quadratic values of the distortion in the mean vector, Δb2gðiÞ . Based on equation

[25], the standard deviation matrix for all m variables is

~Σg ¼
~σg1

⋱
~σgm

2
4

3
5 ð26Þ

Having expressions for ~bg and ~Σg , it follows that the distorted correlation matrix is

calculated as ~Sg ¼ 1
~ng−1

~X
T
gnorm

~Xgnorm . Combining ~Sg with Eq. (17) yields

~ng−1
	 


~Sg ¼ ~Σ
−1
g ΣgX

T
gnorm

−ΔbgITng

� �
xTpnorm

h i
XgnormΣg−IngΔb

T
g

� �
~Σ
−1
g

xpnorm

" #
ð27Þ

It follows that,

~ng−1
	 


~Sg ¼ ~Σ
−1
g ΣgX

T
gnorm

XgnormΣg ~Σ
−1
g −~Σ

−1
g ΣgX

T
gnorm

IngΔb
T
g
~Σ
−1
g −~Σ

−1
g ΔbgITngXgnormΣg ~Σ

−1
g

þ ~Σ
−1
g ΔbgITng IngΔb

T
g
~Σ
−1
g þ xTpnormxpnorm

ð28Þ

As XT
gnorm

Xgnorm ¼ ðng−1ÞSg , ΣgXT
gnorm

¼ XT
g −bgI

T
ng , XgnormΣg ¼ Xg−Ing b

T
g , this expression

can be expressed as:

~ng−1
	 


~Sg ¼ ng−1
	 


~Σ
−1
g ΣgSgΣg ~Σ

−1
g −~Σ

−1
g XT

g −bgI
T
ng

� �
IngΔb

T
g
~Σ
−1
g −~Σ

−1
g ΔbgITng Xg−Ing b

T
g

� �
~Σ
−1
g

þng ~Σ
−1
g ΔbgΔb

T
g
~Σ
−1
g þ xTpnormxpnorm

ð29Þ

Now, as XT
g Ing ¼ bgITng Ing ¼ ITngXg ¼ ITng Ing b

T
g ¼ ngbg , the second and third terms of

Eq. (29) disappear. Then, the distorted correlation matrix ~Sg is given by

~Sg ¼ ng−1

ng
~Σ
−1
g ΣgSgΣg ~Σ

−1
g þ ~Σ

−1
g ΔbgΔb

T
g
~Σ
−1
g þ 1

ng
xTpnormxpnorm ð30Þ

Note that, in this expression, ~Sg depends on three terms:

1. ~Σ
−1
g ΣgSgΣg ~Σ

−1
g , which considers the contributions made from the non-distorted

correlation matrix Sg after an actualization of the standard deviation, with a natural

weight of ng−1
ng

.

Racedo et al. BioData Mining           (2021) 14:31 Page 11 of 18



2. xTpnormxpnorm , which considers the contribution of the new sample to the constitution

of the distorted correlation matrix, with a natural weight of 1
ng
.

3. ~Σ
−1
g ΔbgΔb

T
g
~Σ
−1
g , which considers the effects of the distortion of Σg and bg in ~Sg .

Finally, the distortion of the correlation matrix will be measured with the estimation

of the deviation between Sg and ~Sg , using the metric φðSg ; ~SgÞ defined in Eq. (14). As

previously mentioned, if the number of samples for the group g is large, the integration

of xp will barely cause a distortion in the correlation structure, even if it has different

features compared to the samples in Xg. For example, if Xg were composed of 200 sam-

ples, the natural relative weight of the mean vector (bc) for the construction of the dis-

torted mean vector would be ~ 0.995, while the natural weight of the sample would

(only) be ~ 0.005.

On the other hand, if the weights were calculated assuming that Xg is composed of

few samples, that is, replacing ng for nredg (so that nredg < ng) in the quotients to calculate

the relative weights, these weights would be more even and provide a weighting factor

for the calculation of the distorted correlation matrix using all the information con-

tained in the original samples of Xg (in bg, Σg, and Sg). This is equivalent to finding a

generatrix base of a few samples/patients (nredg ) that can represent all the characteristics

of Xg, incorporate xp, and then evaluate the distortion caused to the correlation struc-

ture, providing an artificial dimensional reduction. For example, if the relative weights

were calculated assuming that Xg is composed only of three samples that exhibit all the

attributes of the original dataset (i.e., nredg ¼ 3), these weights would have the values of

0.75 and 0.25, respectively, for the calculation of the distorted mean vector.

The lower threshold for this artificial dimensional reduction could be found making

nredg ¼ 2 in the calculation of the relative weights. If nredg ¼ 1, this would lead to leaving

out all the information contained in Sg to the estimation of ~Sg (see Eq. (30)). A similar

result is obtained for the standard deviation (see Eq. (28)).

Proposed classification rule

Now that the artificial dimensional reduction approach has been proposed, it will be

used alongside the metric φ for the creation of a tool to classify new samples/patients

into either the control or case group. The classifier will work under the assumption

that a sample’s likelihood of belonging to either group is inversely proportional to the

distortion caused by its incorporation into that group. This classification approach in-

cludes the following steps:

1. Store the new sample in xp.

2. Define the “maximum artificial dimension” to be evaluated as n≤ minðnc; nvÞ ðn∈
zþÞ: Choose a dimension “step of change”, Δn∈zþ, such as n − 2 is divisible by Δn.

Thus, ðn−2ÞΔn þ 1 would define the number of artificial dimensions to be evaluated.

Therefore, we set nredg ¼ ð2; 2þ Δn; 2þ 2Δn;…; nÞ for both g = c and g = v.

Racedo et al. BioData Mining           (2021) 14:31 Page 12 of 18



3. Evaluate Eqs. (18), (25), (26) and (30) using nredg instead of ng. Perform this

evaluation for both g = c and g = v, and for all values of nredg . Store the resulting

distorted correlation matrices as

~Sc ¼
~Scj

nredg ¼2

⋮
~Scj

nredg ¼n

8>><
>>:

9>>=
>>;; ~Sv ¼

~Svj
nredg ¼2

⋮
~Svj

nredg ¼n

8>><
>>:

9>>=
>>; ð31Þ

4. For each nredg ¼ ð2; 2þ Δn; 2þ 2Δn;…; nÞ, calculate

ψg

� �



nredg

≔
1

φ Sg ; ~Sg
nredg

� �









; g ¼ c; vf g ð32Þ

where |l| is the absolute value of l. In consequence, large values of ψ indicate a

small distortion in the correlation structure, and therefore, a high degree of affinity

between Xg and xp. On the other hand, small values of ψ indicate a big distortion

and a low degree of affinity between Xg and xp.

5. Calculate the average value for ðψgÞjnredg
as

ψg ¼
1
n

X
∀nredg

ψg

� �



nredg

� �
; g ¼ c; vf g ð33Þ

6. Finally, the outcomes of the proposed classification rule, for a single sample, are ψc

and ψv. The method will classify the sample into the group with the greater value

of ψg . Figure 4 shows a graphical representation to visualize the outcome of the

proposed classification method after classifying a set of new samples one-by-one.

Performance assessment with synthetic data
In this section, we assess the performance of the proposed method to correctly classify

synthetically generated data.

Synthetic data generation

We conducted in silico experiments to assess the performance of the proposed method

under different parameter settings. The following procedure was used to generate syn-

thetic datasets:

1. Define the quadruplet (ni,mj, ρc, ρv). Set n = {20,40,60,80,100,120,140,160},

m = {20,40,60,80,100,120,140}, ρc = 0.1, ρv = 0.2.
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2. For every quadruplet in step 1 construct a pair of generatrix correlation matrices,

Σc j;c and Σv j;v as Σc j;c ¼ ð1−ρcÞIm j þ ρc1mj1
T
m j

and Σv j;v ¼ ð1−ρvÞIm j þ ρv1mj1
T
m j
,

where Im j∈ℝ
mj�mj is the identity matrix and 1mj∈ℝ

mj�1 is column vector of ones.

3. For every pair ðΣc j;c ;Σv j;vÞ, B pairs of Normal-distributed matrices Xcr and Xvr

(with r = {1, 2,…, B}) of dimension ni ×mj are generated. For this purpose, the

NumPy [54] Python package was used. The number of experimental replicates was

B = 100.

Performance assessment procedure

We used the correct classification rate (accuracy) as the assessment criterion to meas-

ure the performance of our method as follows:

1. Merge each ðXcr ;Xvr Þ into a single matrix XTotal ¼ Xcr
Xvr

� �
∈ℝ2n�m.

2. For every pair ðXcr ;Xvr Þ, execute the proposed algorithm with each row sample xpi
¼ XTotali ½i; :�, i = {1, 2,…, 2n}, and classify xpi .

3. Compute the average classification accuracy as:

Accuracy ¼ 100� N
2n

ð34Þ

where N is the number of correctly classified samples.

Fig. 4 Illustration of new samples and the line that separates both groups with the proposed method. Samples
lying in the upper semi-plane will be classified in the case (v) group and in the control (c) group otherwise
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Performance assessment results with synthetic data

Table 3 summarizes the main results. Our method exhibits exceptional accuracy for all

the configurations tested. Interestingly, accuracy decreases as the number of features m

decreases and the sample size n increases.

Validation with real datasets
In this section, we study the performance of the proposed method using two real-world

datasets, which contain OTU count tables obtained through 16S rRNA gene sequen-

cing data from microbiota experiments. We also compare the classification accuracy of

our method with those of two state-of-the-art methods: SVM [39] and SVM-RFE [41].

Datasets

The first dataset is from the American Gut Project (AGP) [51], which is one of the largest

crowd-funded microbiome research projects. The second dataset is the Greengenes (GG)

database [52], created with the PhyloChip 16s rRNA microarray. For the comparison ex-

periment, only fractions of the datasets were used. In particular, a total of 578 samples

and 127 features comprised the AGP data set, while 500 samples and 26 features com-

prised the GG data set. In both data sets, 50% of the samples correspond to cases.

Validation scenarios results

Datasets were preprocessed as described in section “Data pretreatment”. Further, the pro-

posed method, as well as the SVM and SVM-RFE methods, were applied after separating

the whole data set into training, testing, and validation sets using 70, 20, and 10% of the

data, respectively. For the SVM-RFE method, the number of features to select was nfeatures

¼ f5; 10; 15; nfeatures2 g and the average of the results was calculated. The tuning parameters

used for the SVM and SVM-RFE methods were C = 1 and γ = 0.05, where C trades off the

correct classification of training examples against the maximization of the decision func-

tion’s margin, and γ defines how far the influence of a single training example reaches.

Table 4 shows the main results. For the AGP data set, SVM is the least accurate, and SVM-

RFE has the highest accuracy. This latter result is mostly due to all the strong features of SVM

and the ability of the SVM-RFE method to eliminate variables that are not highly relevant in the

data. Interestingly, our method outperforms SVM and is a close competitor of SVM-RFE.

For the GG dataset, although the number of variables is small, the SVM-RFE and our

method showed accuracy values above 90%, while the accuracy for the SVM method is

below this threshold. It is worth highlighting that, for this data set, our method outper-

forms both the SVM and SVM-RFE methods. The latter result is thanks to the artificial

dimensional reduction conducted to balance the natural weights when the number of

Table 3 Performance of the proposed method for synthetic datasets. Configurations (n, m) not
reported showed 100% Classification Accuracy

Sample size (n) Number of features (m) Classification Accuracy (%)

80 40 99.8

100 20 98.1

120 20 99.7

160 20 98.0
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samples is greater than the number of variables. Figure 5 provides a graphical illustra-

tion of the proposed method’s classification outcome for both real datasets used for val-

idation, i.e., the AGP and the GG.

Discussion and conclusions
The ability to characterize populations of patients, species, or biological features, usu-

ally comprising a large number of variables in order to use the extracted characteristics

to classify new samples into one of such populations’ categories is a relevant tool for

biological and medical studies. When data describing these populations is compos-

itional, further limitations and challenges arise.

Here, we proposed a new method to classify samples into one of two previously

known categories. The method uses a new metric developed to quantify the overall cor-

relation structure deviation between two datasets, and a new dimensionality reduction

technique. Although we illustrated the usefulness of our proposal with compositional

data, its application is not limited, under any circumstances, to data of this nature. In

fact, when data is not compositional, the centered log-ratio transformation and the

zero-replacement algorithm must not be applied.

Validation with synthetic data showed that the proposed method achieves accuracy

values above 98%. Moreover, comparison of the performance of our method with that of

SVM and the SVM-RFE (i.e., two state-of-the-art classification techniques), using two

real-world datasets from 16 s RNA sequencing experiments, showed that our method

outperforms the SVM method in both data sets, outperforms the SVM-RFE method in

the GG data set, and is a close competitor of the SVM-RFE method in the AGP data set.

Future studies may address the ability of our proposed method to perform accurately

for a broader range of dimensions (number of variables and samples) and assess its per-

formance for more scenarios of dissimilar correlation structures other than that for ρc =

0.1 and ρv = 0.2. Moreover, our method may be extrapolated for multi-category classifi-

cation, and a performance assessment may be conducted to test its classification accur-

acy in non-binary scenarios.

Table 4 Classification accuracy for each method for the AGP and GG data sets

Dataset SVM SVM-RFE Proposed Method

AGP 92.03% 96.33% 95.06%

GG 89.34% 92% 94%

Fig. 5 Illustration of new samples and the line that separates both groups with the proposed method for
the AGP (left) and GG (right) data sets

Racedo et al. BioData Mining           (2021) 14:31 Page 16 of 18



Abbreviations
AGP: American gut project; alr: Additive lo-ratio; ANN: Artificial Neural Networks; BM: Bayesian multiplicative
(algorithm); clr: Centered log-ratio; CSVM-RMFE: Correlation based support vector machine–recursive multiple feature
elimination; GG: Greengenes (database); GrBoost: Gradient boosting; ilr: Isometric log-ratio; NN: Nearest Neighbor;
OTU: Operational taxonomic unit; PCA: Principal component analysis; rRNA: Ribosomal ribonucleic acid; SPIEC-
EASI: Sparse inverse covariance estimation for ecological association inference; SVM: Support vector machine; SVM-
RFE: Support vector machine recursive feature elimination

Acknowledgements and funding
This study was financed by COLCIENCIAS grant No. 1215-5693-4635, contract 0770-2013. By the time this work was de-
veloped, IP was a doctoral student at Universidad del Norte, Colombia, whose PhD was funded by COLCIENCIAS and
Gobernación del Atlántico (Colombia), grant No. 673 (2014), “Formación de Capital Humano de Alto Nivel para el Depar-
tamento del Atlántico”. EZ and HSJV are supported in part by award No. R01AI110385 from the National Institute of Al-
lergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. JIV was partially supported by research
grant FOFICO 32101 PE0031 from Universidad del Norte, Barranquilla, Colombia.

Authors’ contributions
Technique design: SR, IP, EZ. Algorithms implementation: SR, IP. Experimental design: JIV, EZ, HSJV, MS. Writing of the
manuscript: SR, IP, EZ, JIV, MS, HSJV.

Availability of data and materials
The source code, implemented in Python 3, is readily available in the following GitHub site: https://github.com/
JoaoRacedo/arn_seq_pipeline. This code generates synthetic datasets to demonstrate the use of the pipeline. The
American Gut Project’s datasets can be found on the following website: http://americangut.org. Finally, the
Greengenes’ datasets can be found on: https://greengenes.lbl.gov/Download/OTUs/.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 4 November 2020 Accepted: 16 June 2021

References
1. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The Human Microbiome Project. Nature

[Internet]. 2007;449(7164):804–10. Available from: https://doi.org/10.1038/nature06244.
2. Kitano H. Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Curr

Genet [Internet]. 2002 [cited 2019 Nov 13];41(1):1–10. Available from: https://doi.org/10.1007/s00294-002-0285-z.
3. Oltvai ZN. Life’s complexity pyramid Zoltán N. Oltvai. 2010;763(2002).
4. Kitano H. Systems biology: a brief overview. 2015;(April 2002).
5. Voorhies AA, Ott CM, Mehta S, Pierson DL, Crucian BE, Feiveson A, et al. Study of the impact of long-duration space

missions at the International Space Station on the astronaut microbiome. Sci Rep [Internet]. 2019;1–17. Available from:
https://doi.org/10.1038/s41598-019-46303-8

6. Somerville C, Somerville S. Plant functional genomics. Science. 1999;285(5426):380–3.
7. Gill R, Datta S, Datta S. A statistical framework for differential network analysis from microarray data. BMC Bioinformatics.

2010;11(1):95.
8. Gill R, Datta S, Datta S. dna: an R package for differential network analysis. Bioinformation. 2014;10(4):233.
9. Juric D, Lacayo NJ, Ramsey MC, Racevskis J, Wiernik PH, Rowe JM, et al. Differential gene expression patterns and

interaction networks in BCR-ABL—positive and—negative adult acute lymphoblastic leukemias. J Clin Oncol. 2007;
25(11):1341–9.

10. Van Treuren W, Ren B, Gevers D, Kugathasan S, Denson LA, Va Y, et al. Resource the treatment-naive microbiome in
new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–92.

11. Ruan D, Young A, Montana G. Differential analysis of biological networks. BMC Bioinformatics. 2015;16(1):327.
12. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-

independent, community-supported software for describing and comparing microbial communities. Appl Environ
Microbiol. 2009;75(23):7537–41.

13. Rao KR, Lakshminarayanan S. Partial correlation based variable selection approach for multivariate data classification
methods. Chemom Intell Lab Syst. 2007;86(1):68–81.

14. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of
microbial ecological networks. PLoS Comput Biol. 2015;11(5):e1004226.

15. Aitchison J. The statistical analysis of compositional data. J R Stat Soc Ser B. 1982:139–77.
16. Filzmoser P, Hron K, Reimann C. Science of the Total Environment Univariate statistical analysis of environmental

(compositional) data: problems and possibilities. Sci Total Environ [Internet]. 2009;407(23):6100–8. Available from:
https://doi.org/10.1016/j.scitotenv.2009.08.008.

Racedo et al. BioData Mining           (2021) 14:31 Page 17 of 18

https://github.com/JoaoRacedo/arn_seq_pipeline
https://github.com/JoaoRacedo/arn_seq_pipeline
http://americangut.org/
https://greengenes.lbl.gov/Download/OTUs/
https://doi.org/10.1038/nature06244
https://doi.org/10.1007/s00294-002-0285-z
https://doi.org/10.1038/s41598-019-46303-8
https://doi.org/10.1016/j.scitotenv.2009.08.008


17. Clark C, Kalita J. A comparison of algorithms for the pairwise alignment of biological networks. Bioinformatics [Internet].
2014;30(16):2351–9. Available from: https://doi.org/10.1093/bioinformatics/btu307.

18. Atchison J, Shen SM. Logistic-normal distributions: some properties and uses. Biometrika. 1980;67(2):261–72.
19. Aitchison J. A new approach to null correlations of proportions. J Int Assoc Math Geol. 1981;13(2):175–89.
20. Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C. Isometric Logratio transformations for compositional

data analysis. Math Geol [Internet]. 2003;35(3):279–300. Available from: https://doi.org/10.1023/A:1023818214614.
21. Greenacre M, Grunsky E. The isometric logratio transformation in compositional data analysis: a practical evaluation. 2019.
22. Pan M, Zhang J. Correlation-based linear discriminant classification for gene expression data. Genet Mol Res. 2017;16(1).
23. Hira ZM, Gillies DF. A review of feature selection and feature extraction methods applied on microarray data. Adv

Bioinforma 2015;2015.
24. Goswami S, Chakrabarti A, Chakraborty B. Analysis of correlation structure of data set for efficient pattern classification.

In: 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF); 2015. p. 24–9.
25. Russell EL, Chiang LH, Braatz RD. Data-driven methods for fault detection and diagnosis in chemical processes. New

York: Springer Science & Business Media; 2012.
26. Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23(19):2507–17.
27. Serban N, Critchley-Thorne R, Lee P, Holmes S. Gene expression network analysis and applications to immunology.

Bioinformatics. 2007;23(7):850–8.
28. Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687.
29. Radovic M, Ghalwash M, Filipovic N, Obradovic Z. Minimum redundancy maximum relevance feature selection

approach for temporal gene expression data. BMC Bioinformatics. 2017;18(1):1–14.
30. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.
31. Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods.

2013;10(12):1200–2.
32. Kavitha KR, Rajendran GS, Varsha J. A correlation based SVM-recursive multiple feature elimination classifier for breast

cancer disease using microarray. In: 2016 International Conference on Advances in Computing, Communications and
Informatics (ICACCI); 2016. p. 2677–83.

33. Collins GS, Mallett S, Omar O, Yu L-M. Developing risk prediction models for type 2 diabetes: a systematic review of
methodology and reporting. BMC Med. 2011;9(1):103.

34. Aarøe J, Lindahl T, Dumeaux V, Sæbø S, Tobin D, Hagen N, et al. Gene expression profiling of peripheral blood cells for
early detection of breast cancer. Breast Cancer Res. 2010;12(1):R7.

35. Datta S. Classification of breast cancer versus normal samples from mass spectrometry profiles using linear discriminant
analysis of important features selected by random forest. Stat Appl Genet Mol Biol. 2008;7(2).

36. Šonka M, Hlaváč V, Boyle R. Image processing, analysis, and machine vision. International Student Edition; 2008.
37. Dembélé D, Kastner P. Fold change rank ordering statistics: a new method for detecting differentially expressed genes.

BMC Bioinformatics. 2014;15(1):14.
38. Bevilacqua V, Mastronardi G, Menolascina F, Paradiso A, Tommasi S. Genetic algorithms and artificial neural networks in

microarray data analysis: a distributed approach. Eng Lett. 2006;13(4).
39. Ca DAV, Mc V. Gene expression data classification using support vector machine and mutual information-based gene

selection. Proc Comput Sci. 2015;47:13–21.
40. van Dam S, Vosa U, van der Graaf A, Franke L, de Magalhaes JP. Gene co-expression analysis for functional classification

and gene--disease predictions. Brief Bioinform. 2018;19(4):575–92.
41. Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene

expression data. J Am Stat Assoc. 2002;97(457):77–87.
42. Bhuvaneswari V, et al. Classification of microarray gene expression data by gene combinations using fuzzy logic (MGC-

FL). Int J Comput Sci Eng Appl. 2012;2(4):79.
43. Belciug S, Gorunescu F. Learning a single-hidden layer feedforward neural network using a rank correlation-based

strategy with application to high dimensional gene expression and proteomic spectra datasets in cancer detection.
J Biomed Inform. 2018;83:159–66.

44. Dettling M, Bühlmann P. Boosting for tumor classification with gene expression data. Bioinformatics. 2003;19(9):1061–9.
45. Friedman J, Hastie T, Tibshirani R, et al. Additive logistic regression: a statistical view of boosting (with discussion and a

rejoinder by the authors). Ann Stat. 2000;28(2):337–407.
46. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput

Syst Sci. 1997;55(1):119–39.
47. Fix E, Hodges Jr JL. Discriminatory analysis-nonparametric discrimination: small sample performance; 1952.
48. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees. Boca Raton, FL: CRC Press; 1984.
49. Martín-Fernández J-A, Hron K, Templ M, Filzmoser P, Palarea-Albaladejo J. Bayesian-multiplicative treatment of count

zeros in compositional data sets. Stat Modelling. 2015;15(2):134–58.
50. Pearson K. Mathematical contributions to the theory of evolution—on a form of spurious correlation which may arise

when indices are used in the measurement of organs. Proc R Soc Lond. 1897;60(359–367):489–98.
51. McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G, et al. American Gut: an open platform for

citizen science microbiome research. Msystems. 2018;3(3):e00031–18.
52. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene

database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–72.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Racedo et al. BioData Mining           (2021) 14:31 Page 18 of 18

https://doi.org/10.1093/bioinformatics/btu307
https://doi.org/10.1023/A:1023818214614

	Abstract
	Background
	Results
	Conclusions

	Background
	Feature selection
	Classification

	Proposed classification method
	Data pretreatment
	Assessing correlation structure distortion
	Dimensionality reduction technique
	Proposed classification rule

	Performance assessment with synthetic data
	Synthetic data generation
	Performance assessment procedure
	Performance assessment results with synthetic data

	Validation with real datasets
	Datasets
	Validation scenarios results

	Discussion and conclusions
	Abbreviations
	Acknowledgements and funding
	Authors’ contributions
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

