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1. Introduction

One of the most important aspects in the study of evolution problems is the asymptotic behavior of
solutions. In particular, since J. Fourier introduced the classical heat equation u; = Aw in 1822, see [19],
to model diffusion phenomena, several authors have invested their time and effort in researching the large
time behavior of diffusion processes. For example in [13,17,21,28,37] the authors studied large-time behavior
and other asymptotic estimates for diffusion problems in RY, and in [12,20] for open bounded domains.
Estimates for heat kernels on manifolds have been studied in [25,29,11], and in [36] the author obtained
Gaussian upper estimates for the heat kernel associated to the sub-laplacian on a Lie group.

In the past few years, the connection is well recognized between fractional calculus related to evolution
problem and partial differential equations. Recently, from different points of view, asymptotic estimates of
solutions of fractional diffusion phenomena have been stated in [1,26]. In particular, in [1] the authors use
subordination formulas as the main tool, however in [26] the authors work directly with estimates of the
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fractional fundamental solution. We propose to use both tools for our aims, as we will see throughout the
paper.

On the other hand, finite differences were introduced some centuries ago, and they have been used
in different mathematical problems, mainly in approximation of solutions of differential problems for the
numerical solution of differential equations and partial differential equations. The most knowing ones are the
forward, backward and central differences (the forward and backward differences are associated to the Euler,
explicit and implicit, numerical methods). In the last years, several authors have been working in partial
difference-differential equations ([2-4,9,10,31,32]) from the point of mathematical analysis, more precisely,
harmonic analysis, functional analysis and fractional differences. These last ones, fractional differences, are
nowadays a topic of important research, see for example [2,23,30,31,35,38] and references therein. Several
aspects of such problems have been studied in those papers: maximal regularity, stability, fractional discrete
resolvent operators, among others.

The main goal in this paper is to study asymptotic decay and large time behavior on LP(R™) of solutions
of the following fractional discrete in time heat problem, as the authors in [2] do in the classical case (o = 1).
We consider

c0%u(nh,z) — Au(nh,z) =0, neN,zeRY,
(1.1)
U‘(va) = f(x)a

where 0 < a < 1, ¢d“ is the Caputo fractional h-difference operator (Section 3), A denotes the Laplace
operator acting in space, u is defined on N x RY and f is a function defined on RY. We use subordination
formulas to write the solution of the previous problem. Indeed we will write the solution

u(nh, z) Zsoala (n = 1,5 = 1)(Gjn * f)(x),

where G; j, is the discrete Gaussian kernel associated to the discrete in time heat problem given in [2], and
gpg, 5 is the discrete scaled Wright function (which is introduced in Section 4):
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Note that it is a generalization of one given in [7].

Previous subordination formula and the known results about the classical case (o = 1, see [2]) are the
key tools to study the decay and the asymptotic behavior on LP(R™) for the solutions of (1.1).

The paper is organized as follows. In second section we revisited known useful results for our aims. We
recall the concept of Wright functions, which plays a key role in the subordination formulae for resolvent
families in the continuous case, and whose properties help us to study important results for the discrete
setting. Also, we present basic properties for the discrete Gaussian kernel in RY (solution of (1.1) for a = 1).

Section 3 is devoted to state our fractional discrete setting. We consider the classical backward difference
on the mesh of step h > 0. This difference allows to consider adequate notions of discrete fractional sum,
and discrete fractional difference in the Riemann-Liouville and Caputo sense, for our purpose. Several useful
properties will be shown.

In Section 4 we introduced the Mittag-Leffler sequences which are the solutions of (1.1) in the scalar case.
Such Mittag-Leffler functions motivate the study of the Wright functions in the discrete setting, which are
one of the key tools in this paper. Proposition 4.3 contains many properties of both type functions, and the
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relations between them. Such result can be considered the analogue one to [5, Theorem 3] in the continuous
case.

In Section 5 we focus on the study of the fundamental solution of (1.1). We prove by the subordination
formula given by the discrete heat kernel and Wright functions that, in fact, the integral defined by such
subordination formula is the solution. One of the flashy facts of the subordination formula proposed (see
(5.2)) is its relation with the Gaussian kernel and the Fox H-function, as Proposition 5.2 and Proposition 5.3
show. Also we state basic properties of the fundamental solution. One of them is that the integral over RY
of the fundamental solution is 1, which gives directly the mass conservation principle for solutions of (1.1).

Section 6 contains the asymptotic LP-results. We state the LP-decay for the fundamental solution and its
gradient. These decay bounds allow to get the LP-decay for the solution of (1.1) (Theorem 6.2), and also
the large time behavior. In this asymptotic behavior is reflected the mass conservation principle because
the solution converges to the total mass times the fundamental solution (see Theorem 6.5).

2. Preliminaries
2.1. Continuous fractional calculus

In this part, we recall some concepts and basic results about fractional calculus in continuous time. Let
0 < a < 1and f be alocally integrable function. The Riemann-Liouville fractional derivative of f of order
« is given by

t

rD{f(t) :== (jt/(lf(li)a:f(s)ds, t>0.
0

The Caputo fractional derivative of order « of a function f is defined by

t

/(t —8)"“f'(s)ds, t >0,

0

1

cDy f(t) == Ti—a)

where f’ is the first order distributional derivative of f(-), for example if we assume that f(-) has locally

integrable distributional derivative up to order one. Then, when o = 1 we obtain oDy = e For more

details, see for example [33,34].
The Mittag-Leffler functions are given by

oo n
Ea,ﬂ(z) —§m7 a7ﬁ>0,ze(C_

We write Ey(2) := E4 1(2). They are solutions of the fractional differential problems
¢ DY Ey(wt®) = wEq (wt®),
and

rDY <t“—1Ea,a(ma)> = wt* B, o(wt?),

for 0 < a < 1, under certain initial conditions. For w > 0 the following property holds
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) )\ozfﬁ
/e*AttﬁflEa,g(wta) dt = SR Re(A) > wa, w> 0.

0

For more details about the Mittag-Leffler function E, g see [15, Chapter 18].
Recall the definition of the Wright type function (see [33])

o0
2" 1

— -~ = 0'+zo’ _ >
Wi,u(2) T;)n!I‘()\n+u) 2m’/0 do A>—-1,u>0,2z€C,

H,
where H, denotes the Hankel path defined as a contour which starts and ends at —oo and encircles the
origin once counterclockwise.

For 0 < a < 1 and 8 > 0, the scaled Wright function in two variables ¢, g (and which was introduced
by Abadias and Miana in [5]) is given by
Vap(t,s) =t TW_, 5(—st™), t>0, scC. (2.1)

Note that using the change of variable z = %, we get the integral representation

1 o
Ya,p(t,s) = 57 /z_ﬁetz_sz dz, t,s>0.
i
H,

Many properties about such functions that we will use along the paper appear in [5].

Next, we recall the definition of Fox H-funtions. Let m,n,p,q € Ng such that 0 < m < ¢, 0 < n < p.
Let a;,b; € C and a4, 8; € Ry. The Fox H-function is defined via a Mellin-Barnes type integral,

mn . mn (af’uaz 1 —s
Hy"(2):=H)')' | 2 (s, ;)1 Pl = 27rz Hpq ds,

where

(aiv ai)l 2P (alv Oél), s, (apa ap)v

(ijﬁj 1,q - (bla )a o u(bqu6q>7
HFb + Bjs HFl—az—als)
=1

1

)

Hpy'(s) = pJ: q
H I(a; + a;s) H I'(1—b; — Bjs)

1=n-+ j=m+1

—

and « is the infinite contour in the complex plane which separates the poles

—b; —1

b- =
5l Bj

(]Zlaama ZENU)

of the Gamma function I'(b; + 5;5) to the left of v and the poles

1—a;+k
aikz%(izl,---,n; k € Np)
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to the right of . For more details of this type of functions, see [27].

Finally, we recall that the Gaussian kernel Gi(x) is defined by

Gt(l’) = W€7%7 t > O, S RN (22)
Let
a(6) = Flu)(©) = (@2m) V2 / e Eu () dx
RN
and

denote the Fourier and inverse Fourier transform of u, respectively.
The function G¢(x) has the following properties (see for example [18]).

Proposition 2.1. The Gaussian kernel satisfies:

(i) Gy(x) > 0.
(i4) /Gt(x) do =1,

RN
(ii) F(Gy)(€) = et ¢ e RV,

(iv) /|x|2Gt(J:) dz = 2Nt.

RN

2.2. Discrete diffusion equation

In [2], for h > 0 the authors defined the heat kernel in discrete time on the mesh of step h as

1

gn,h(x) = el

e VMG () dt, n , T N . .
(”)O/ t"T Gy () dt eN,zeRY\ {0} (2.3)

Moreover, they proved the following proposition.

Proposition 2.2. The function G, }, satisfies:

(1) Gun(z) >0, neN, zecRY\ {0}
() /gn,h(a:) der = 1.
B 1
(71) F(Gn,n)(&) = AT hER) ¢ eRY.
(“}) g’n,h(x) _hgn—l,h(x) _ Agn,h(m)a n>2 zé€ RN \ {0}

Next, given a function f defined on RY and h > 0, Abadias and Alvarez proved (see [2]) that w(nh, z) =
(Gn.p * f)(z) is the unique solution of the problem
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w(nh,z) —w((n — 1)h,z)
h

= Aw(nh,z), n €N,z e RN\ {0},
(2.4)

w(0,7) = f(z).
3. Discrete fractional calculus

In this section we recall the definition of Cesaro numbers and some useful properties of them. Also, we
introduce the discrete time setting where we will work, and the corresponding associated fractional calculus.

For an arbitrary a € C, we denote by k*(n) the Cesaro numbers which are the Fourier coefficients of the
holomorphic function on the disc (1 — z)~%, that is,

1 o
e =Y k() (3.1)
(1 - 2)04 n=0

It is known that the expression of the Cesaro numbers is given by

k“(n) := nt (3.2)

Note that k°(n) := Jo(n) is the Kronecker delta. Sometimes, to make more easily computations with the
Cesaro sequence k® for a € C \ {0,—1,—2, ...}, we use an equivalent expression of (3.2), namely

I'(n+ «)

F) = Fr s 1

(3.3)

where T'(+) is the gamma function.
We recall the following properties of k, which appear for example in [22,31,39].

Proposition 3.1. The following properties hold:

(i) For a> 0, k*(n) > 0, n € No.
(#) For all o, B € C, we have the semigroup property

STk (n — () = kP (). (3.4)
§=0

(#ii) For a> 0,

(iv) For a >0

a+n

kE*(n+1) = 1

K (n). (3.6)

Let h > 0 and f be a sequence defined on N? := {0, h, 2h, ...}, the backward difference of the sequence
f is defined by
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f(nh) = f((n = 1)h)

5leftf(nh) = h

, neN.
Taking into account the previous definition, we get the following result.
Proposition 3.2. Let 0 < a < 1 and p,(nh) := h*k*(n). Then,
Siefipa(nh) = Rk (n), n € N.
Proof. By (3.6) and the property of Gamma function 2I'(z) = I'(z + 1) the result follows. O

The definitions of the fractional sum and fractional difference operators (in the sense of Riemann-Liouville
and Caputo) with the sequence k* were initially proposed by C. Lizama in [30]. Recently, R. Ponce in [38]
defines a generalization. We make a slightly modification (since our index starts at one) to this definition.

Definition 3.3. Let f be a sequence defined on NP'. For a > 0, the a-th fractional sum of f is defined by
means of the formula

57 f(nh) :=h*Y " k*(n—j)f(jh), ne€N.

j=1
Note that, for a =0, §~*f(nh) = f(nh).
As a direct consequence of the previous definition, the operator d~ satisfies the semigroup property:
60 P f(nh) = 6~ @B f(nh), n e N.

Definition 3.4. Let 0 < o < 1 and f be a sequence defined on N'. The a-th fractional h-difference in the
sense of Riemann-Liouville of f is defined by

RLOCf(nh) == 816~ 1Y f(nh),  neN. (3.7)
Proposition 3.5. For 0 < a < 1 the relation
0 r0%f(nh) = f(nh), n € N,
holds.
Proof. First of all, we adopt the notation: Z?:l f(4h) = 0. Then, by (3.4), we get
0~ %Rrpd® f(nh) = h® z”: k“(n— J)ro® f(jh)
j=1

= h” Z k*(n — §)etsd ) f(jh)

j=1
— ho— 1Zka loc)fjh ho— lzka 5(1 af((j—l)h)

n

=Zk“<n—j>2k1*a<j— Zk“ n—j Zkl (G = 1= 0)f(ih)
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n 7 n 7j—1
=D k(=) DR =S (k) = Dk (n =) Y KT =1 =) f(ih)

n—1 7
=Y k*n—1-§)> k' —i)f((i+1)h)
§=0

=0

—Zko’n—Q—] ijlo’ —0)f(E+1)h)

n—1 n—2
= f((E+Dh) =Y f((i+1)h) = f(nh)
7=0 =0

Consequently, we have § “gd% f(nh) = f(nh) for alln € N. O

Definition 3.6. Let 0 < a < 1 and f be a sequence defined on NP. The Caputo fractional difference of order
« 1s defined by

0% f(nh) := 6=, 4 f(nh), neN. (3.8)

Note that the previous definition gives ¢0% = it for a = 1.
The next result shows the relation between Caputo and Riemann fractional difference.

Proposition 3.7. Let 0 < a < 1. Then the following identity holds

c6®f(nh) = rpd“(f(nh) — £(0)), n € N.

Proof. By (3.8) and (3.7),
0% f(nh) = h'=° 2_:1 k' (n = J)1ete £ (jh)
:h—aikl—a(n— —h- Zkl “(n—)f((G—1)h)
=h" X_jo K7 (n—5)f(jh) —h™" Z_jo ' (n = 1= 5)f(jh) — h™ k' (n) f(0)
=h" ZO K7 (n = ) f(jh) = h™® Z:é K7 (n =1 = 5)f(jh))
—h=f(0 (Zkl “( gklﬂnlj))
=h" Zkl “(n=5)(F(Gh) = £(0)) = h™" §k1a<n —1=5)(f(7h) = f(0)). O

Corollary 3.8. Let 0 < a < 1 and f be a sequence defined on N[. Then the following identity holds

6~ %c6% f(nh) = f(nh) — f(0).
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Proof. The result is immediate by Propositions 3.5 and 3.7. O
The Proposition 3.7 allows to establish the following property between the fractional difference operators.
Proposition 3.9. For all0 < a <1 and 0 < 3 the relation holds
6BtV pr s = f(nh)) = 6~ P+ f(nh),  neN.

Proof. By Proposition 3.7, we have

6—(ﬁ+1)RL517af(nh)) _ hﬁ+1 Z kﬁ+1(n _ j)RL(Sl*af(jh)

Jj=1

= pfit Z K (n = §)cd " f(jh) + oo Z P (n— )k (5 — 1) £(0)

i=1 =t
n n—1
=S K (= §)ed T f(h) + RPN R (= 1 - )k (5) £(0)
i=1 =0
n—1
=0~ Gy f(nh) + WD K (0 — 1= 5) £(0)
§=0

_ 554 ) — 554 £(0) + KPS K — 1) £(0)
j=1

=¢-) f(nn). O
4. Special functions

In this section we introduce a discrete version of the Mittag-Leffler and scaled Wright functions, which
generalize the ones defined in [7]. Also, we present some interesting properties which will be useful along
the paper.

Let a, 8,h > 0 and A € C. The Mittag-Leffler sequences are given by

Daj+B+n—1), o s 1
gl s(An): n—l'z Faj 1) (A, neN, <. (4.1)

The convergence of previous series can be justified by (3.5). Using the Cesaro numbers (3.3), one can rewrite
(4.1) as

52,/3()‘7”)ZZh‘”+ﬁka”ﬁ(n—l)/\J, neN, |\< =
j=0

Particularly, note that

o0 o0 1
El (A n) (RA) K (n (RN E™(5) = 1/h=X)"" A < —.
) = X D=3 0 = =N <
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Proposition 4.1. Let 0 < a < 1, 0 < S, h and A € C such that |A| < h% The sequence
52,1(/\, n), neN,
1, n=>0
is solution of the fractional difference problem
cd%(nh) = Xe(nh), n € N.

Proof. For n € N, we have

n

81 (nh) = RO KT (= )ER (A ])

j=1
— hlfa Z k_lfoz(n _ ]) Z haw+1kaw+1(j _ 1)/\1[;
j=1 w=0

= Z p2-otawyw Zklia(n i j)kanrl(j . 1)
w=0 j=1

00 n—1
_ Z p2-ataw\w Z kl—a(n 11— j)kaw+1(j)
w=0 7j=0

— Z h2—a+awk2—a+aw(n _ 1)Aw

w=0

_ Z h2—a+awk2—o¢+aw(n o 1))\111 + h2—o¢k2—a(n o 1)7

w=1

where have used (3.4). Now, by Proposition 3.2, we get

6]efth2_ak2_a(n — 1) = hl_akl_a(n — 1)

and
5lefth27a+awk2foc+aw(n o 1) _ hlfaJrawklfa«wa(n o 1)
Then,
rO%e(nh) =Y AMTOUEITO (0 — XY 4 BITORT (n — 1)u(0).
w=0

Hence, by Proposition 3.7 we get the result. O
Next, let us define the discrete scaled Wright function.

Definition 4.2. Let 0 < o < 1 and 0 < 8 be given. Forn € Ny and h > 0, the discrete scaled Wright function
cpgyﬁ is defined by
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1 1 (1=h(2)e)

h - ;

L)Oa,ﬁ(nu?) i 271i / o+l (122 8 dZ7 J€ NCH (42)
T

where Y is the path oriented counterclocsz’se gz’ven by the circle centered at the origin and mdius 0<r<l1.
the

(- h< P )
(27
derivatives, we have defined cpgwg (n,j) as the n-coefficient of the power series centered at the origin of such

function z — is holomorphic on the unit disc. Therefore, by the Cauchy formula for the

holomorphic function.

In the following proposition, we present some useful properties of the discrete scaled Wright function
gogy 5- Many of them follow the spirit of the analogue ones in the continuous case, see [5, Theorem 3].

Proposition 4.3. Let 0 < a<1,0< 3, 0< h and n,j € Ng. The following properties hold:

(0 el =13 (1) (0.
i:On
(i) @t gy (n,3) =09 K (n—i)ph _(i,5), ~>0.

=0

—s/h -1 _ —t/h h ,
(i) h"F /e s g p(s,t) ds = e/ ;‘%,B(H -1,5- )m7 t>0,
, -

where o 5 is given by (2.1).
I _ 1 /1 B!
(iv) ;cpgﬂ(n —1,7— I)E (h - /\) = E537a+5(>\,n), neN, |\ < T
(v) @b 5(n,5) — %B(n J+1) =hek 5 (n,7).

(vi) @b o(n,j+1) = sz,om —p.§)eho(p 1)
p=0
(vii) @ 5(n,j) >0, 0<h<L.
o0

(vid) Y @l o(i,5) = 1.
=0

(i2) Y ol s(n, HR(G) = RO DEIHe ()
=0

Proof.  ({) Note that for |z] < 1 we can write

w3 (a3 (e (457) - S wul

By the uniqueness of the coefficients we have the result.

(i¢) The identity follows from the previous item (7) and (3.4). Indeed,

P i (,3) hﬁﬂz( ) )

hl#vZ( > iR awzkﬁ n— kT (7)

1=0
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=hPt zn: kP (n — 1) ZJ: (1‘70) (—1)WRW TR ()

=0 w=0

n
:h‘ﬁ Z k/ﬁ(n - i)@g,w(i7 J)
=0

(éit) Note that, by (2.1)

oo 1 0o
s/h n—1 _ —s/h n+p—2 —«
h"F /e M sn=Yihy 5(s,t) ds = T () /e g W_qp(—ts™%) ds
0 0

—s/h n+pB—2—ai d
h”ZF az—i—ﬁ)z'/e s s
0

_ 1 B— ocz 1+5—C¥Z)( t)
=h lzh (—ai+p) 1!

_hﬂ 1Zh—oﬂk5 az( _1)<_t)i.

On the other hand, by (i) we obtain

" h =1 BN (i1 i i f-ai _v7
S hatn LD = h ZZ( Z. )(—m - )
= j=1i=0
_ 1 B-1 i—ai . f—oi _ -
=SS () (1)

= pf1 i(_nihi—aikﬂ—ai(n —1) i (‘Z) (%)J l,

i=0 =i J:
=h? 12 R e O} 1)537, . (E)j
peeil (=) \ h
= pB- 12 hl - az( 1)ii <£>j+i
= gt \ h

*hﬁ IZ h azkﬁ C”(nfl)—e /h

for all n € N. Thus, the result is proved.
1
(v) Let h > 0 and X € C such that || < o Then,

= h . 1 /1 7S - 17 —(l—A)gisj_1
Z¢a7ﬁ(n_1’3_1)ﬁ (E_A> :Z@aﬁ(n_l’]_l)ﬁ/e n (j—l)!ds
j=1 Jj=1 0
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i —(5=A)s - h . 1 st
= [e Zcpaﬁ(n—l,j )hﬂ( _1)d
0 j=l1
1 i As i —t/hyn—1
= T () /e /e I =Yehe 5(t, s) dt ds
0 0
1 o0
— —t/hyn—1 a+,8—1E «
o / e t/hgn=1y s () dt
0
1
= Egg a+ﬂ()‘7n)v

where we have used item (i4), [5, Theorem 3 (iii)] and [7, Theorem 2.8.].
(v) The result is obtained as follows:

o 5(n,3)—oh 5(n, 5 +1)

— h¥ i (Z) (—1) R kP~ (n) — hP Ji (‘7 - 1) R e ()
—-1Y <Z / 1> (—1)i b=k =ai(p)

j .
_ pptl-a Z (J) (_1)ihi—aikﬁ—a(i+l)(n)
= hwg,ﬁ—a(nvj)a

where we have used [6, Section 1.4, Eq. (5)].
(vi) By item (i), [6, Section 1.4, Eq. (5)] and (3.4) it follows
s Jj+1

@Z,O(nvj + 1) i

(
<‘7> (—1)'R" k™ (n) +
(

)

1

<.
+

(i ’ 1)(—1)ihi-mk—ai(n)

<]) (_1)ihi—aih1—ak—a(i+1) (n)

7

i=1

Mo

I
o

‘7> (—1)'R"= k= (n) —

=0 %

- Z]: (Z) (=1)'h* ="k~ (n — p)k°(p)

n j

_ Z 3 (Z) (—1) ARk~ (n — p)k~*(p)

p=0 i=0

?) (1) R — p) (RO(p) — Bk (p)

1
( )hz azk az n p ( > hz azk az( )
i=0

p=0 i=0 %
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= et on—p,5)ek o(p, 1)
p=0
(vii) From Definition 4.2, we have that ¢} 4(n,0) = do(n) for n € No. Furthermore,
Pho(n,1) = k%(n) — h'=k~%(n).
Then,

Po(0,1) =1 h= >0

and

l1-a)2-a)---(n—-1-a)

A,
— hl a
n!

>0, néeN.

‘pZ,O(nv 1)

By (%) of the Proposition 3.1 and items (vi) and (i) the result follows.
(viti) The identity is a particular case of (4.2), by letting z — 1~ with z € R.
(iz) By (4.2) and (3.1), we have

e <] oo _ l1—z\« J
gwﬁ,g(n,z)m(j): %/ = u if(_z’sﬁ) Loy az

— pptr(a=1)pB+ya (n). O

Remark 4.4. Let 0 < a < 1. Taking A = 0 in Proposition 4.3-(iv), we have

o0
@Z’lfa(n —1,5)=1, neN.

j=0

(4.3)

Remark 4.5. Some of the results obtained in the previous proposition can be found in the work carried out

by Alvarez et al. in [7] with h = 1.

5. Fundamental solution

Here we investigate the representation of the solution to the fractional diffusion equation (1.1), and we

prove several interesting properties related to it.

Let us start recalling the problem. Let A > 0 and 0 < o < 1. Consider the fractional diffusion equation

in discrete time on the Lebesgue LP(R”) spaces, given by
c0%u(nh,z) = Au(nh,z), ne€N, zeRY,
u(07x) = f(m)’

where u and f are function defined on N/ x RY and R¥ respectively.

(5.1)
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Let us define the fundamental solution
o0
_ h . N
_Z@a,lfoL(n_Lj_1)gj,h<x), neN,xzreRY,
j=1

where the functions G, ;(z) denote the discrete Gaussian defined by (2.3).
The next result shows that Gy, * f is the solution of (5.1).

Theorem 5.1. Let 1 < p < 0o and f be a function on LP(RN). For h > 0 and 0 < a < 1, the function

u(nh, x) = (G 5 * f)(x)

15

(5.2)

(5.3)

is the unique solution of the fractional diffusion equation in discrete time (5.1) on the Lebesgue LP(RY)

spaces.

Proof. First of all, note that by Proposition 2.2-(i3) and (4.3), we can conclude that

/g z)dr = 1.

Consequently, by Young’s inequality for convolutions we have

[u(nh, )|y <[ fllp-

Now, we see that u satisfies (5.1). Equation (2.4) implies

u(nh, z) Z%’m a(n =17 = )diere (Gjn * f) ()

:hilzwg,l—a(n »J )(gjh*f -1 5 @al a ,j—
j=1

=0 by (=15 = 1) (G x f)(x 1§ Oy o —1,7)(Gin * f)(x)
=1

=R ehaa(n =L = 1)(Gin+ )@ 1§ :soal o(n = 1,5)(Gjn * (@)
=1

—h ' aama(n = 1,0)f(2).
Now, by Proposition 4.3-(ii) and (3.2), we have

n—1

W ol i—a(n = 1,0)f(x) = AR Y kT (n = 1= d)gh o(i,0) f ()

=0
n—1

=h7*> K70 —1-)k°>i) f(z)

=0
=h" %' (n - 1) f().

Then, by (v) of Proposition 4.3, we get

(5.4)

D(Gj—1.n * f)()
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Au(nh,) = h™ Y ¢naaln =17 = 1)(Gin* )l ij%la L) (Ginx )(@)
— AR (= 1) (x)

=h7' ) (Phaa(n =10 1) = ¢aqa(n—1,5)) (Gin * (@) = k™K' ~%(n — 1)f(2)

Jj=

3

W) (Pha—a(n=15) —en1_a(n =1, +1)) (Gisrn* f)(@) = h™ k" (n — 1) f(2)

<
Il

o

I
<

o120 = 1,7)(Grarn * (@) = W™k 7% (n = 1) f(2).

J

By the previous identity and (ii) of Proposition 4.3, we have that

n—1
hQAZkO‘n— u(wh x)—h“AZkan—l— w)u((w + 1)h, )
w=1 w=0

n—1 e o]
= h® Z K =1 —=w) Y @h 0w, §)(Giern * f)(@)

Jj=0

kaaan VL (w) f ()

= pt i k% (n—1—w) Z Z k72 (w = p)ot o(p, 5)(Girn * () — f()
w=0

§=0 p=0
ST R — 1 - w) SRR (= p)eh o (5 )G+ ) () — £()
j=0 w=0 p=0
oo n—1
=h'7Y N R T (= 1= p)el o (0. ) (G () — f(x)
=0 p=0
= Z@Z,ka(n = 1,)(Gjs1n* f)(z) — f(x)

<
Il
o

= u(nh,z) - f(),

that is,
u(nh, ) h“AZko‘n— u(wh,z) + f(x).
Now, convolving the above identity by k'~ and multiplying by h~%, we obtain
ho‘zn:klo‘(n—j (jh,z) = AZ (jh,z) — Au(0, ) + h=*k*~*(n) f(z)

= AZu(jh,x) + hk* % (n) f(z).

Jj=1
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By Proposition 3.2, we can conclude that

n n—1
h™ Z K (n — ju(ih,z)—h"" Z EY%(n —1 — j)u(jh, z)
= Au(nh,z) +h™ k' ~*(n) f(x).
Hence, the result follows from Proposition 3.7. O

In the following results we show other representations for G7¥ ;. In the first result, we represent gf:’h(x)
using the Poisson transform of the Gaussian kernel while in the second one we use the Fox H-function. This
fact in turn gives other representations of the solution (5.3).

Proposition 5.2. Let 0 < h and 0 < a < 1. Then, (5.2) is equivalent to

oo o0 n—1
o (z) = hin//efs/h (;_ 1)!zpa,1_a(s,t)at(x) dsdt, neN, zecRV\ {0}, (5.5)
0 0

where Gy is the Gaussian kernel (2.2) and o, g is (2.1).

Proof. From Proposition 4.3 part (iii), we get

=Y ehialn—1,j—1)G;n(x)
j=1

o

- 1 =1
z_: at—a(n=1j—1) = 1)!Gt(x) dt
- 0

ti-1

1
t/h§ o ~_ s
SDOL 1— a 7 1) hi (] — 1)'Gt(x) dt

|
o\

1 SIS
= h—n//eis/h > wal a(S t)Gt( )dS dt.
0 0

The result follows. 0O
Proposition 5.3. Let 0 < h and 0 < o < 1. Then

a 1 jz/?

e — G I RN
n,h(x) F(?’L)WN/2|$|N 13 [4ha ) ] y NE N, HAS \{O}v

where HY? denotes the Fox H-function.

Proof. By [8, Theorem 3.1], [5, Theorem 15-(i7).] and [26, Theorem 2.12], we have the following subordina-

tion formula
1=5,1,0.1) | _ 7¢ (t, )G (x) ds
(0’ Oé) / a,l—al\l, s .

1 4t
N[N | Jaf?
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Now,

o

1 —t/hyn—1 712 4t (1 - ﬂ71)a (Ovl)a (071)

« = Al A 5 § —_— 2 dt
w0 = G / e 2|RE] 0 0

_ 1 H13 -% (1 —n,oz), (1 - %a1)7 (0a1)7 (Oal)

© D)2V 2 (0,1), (0,q)

b e[| @-na), 0= F1.0.)

T T (n)r N[N (a2 (0,0)

_ 1 7730 |=? (1,a)

D(n)aN/2|z[N 70 | 4he | (n,a), (F,1),(1,1) |

where we have used Corollary 2.3.1, Proposition 2.2 and Proposition 2.3 of [27]. O
The following proposition states some basic properties of the fundamental solution.
Proposition 5.4. Let 0 < h, 0 < a <1 and n € N. The function G, satisfies:

(1) Gop(x) >0, neN, 0<h <1
(iz’)/ o (@) dr = 1.

(i) F(GLANE) = 3L (~IeP,m), € €RY.
|

n,h
(iv) :E|2gf;7h(m) dr = 2T'(2)Nhk* T (n — 1).
R

N

Proof. (i) Follows from (vi) of Proposition 4.3 and (i) of the Proposition 2.2. (i) was showed in the proof
of Theorem 5.1 (see (5.4)). Next, let us prove (iii). Since F(Gy)(€) = e~ for ¢ € RN by Proposition 2.1
part (4i7), it follows from [5, Theorem 3] that

[ arcasi e 167 de = Eaa(-lePs).
0

Equation (4.1) implies that

1T s 1
F@N©) = 57 [ €/ s B (—IeF's®) ds = (-l ).
0

Finally, by Fubini’s Theorem, Proposition 2.1 and [5, Theorem 3], we have that

/‘I|2gf{7h(x) dx _QNhn//eS/hm_l)!"/}ml—@(s’t)tdtd‘s
0 0
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=2T'(2)Nh*k* T (n — 1).
Thus, we get item (iv). O
Remark 5.5. We recall that the total mass and first moment of the function

w(nh, x) = (G f)(x)
are conservative (see [2, Remark 2.6]). Then, we have that the total mass of solution of (5.1), given by
(oo}
u(nh,z) =Y @hi_a(n =1, = 1)(Gjn * f)(@)
j=1
is conservative. Indeed,
[t yde =Yty n=15-1) [ G Dade = [ fa)a.
RN Jj=1 RN RN
where in the last equality we have used (4.3). The first moment is also conservative:
oo
/ xu(nh,x)dx = ngl,a(n -1,7-1) / z(Gjn* f)(x)de = / xf(x)dz,
RN Jj=1 RN RN
as long as (1 + |z|)f € LY(RY). However, note that
/ |22 w(nh, x)dz = / |z|? f(x)dx 4+ 2Nnh
RN RN
implies that the second moment of u is not conserved in time. In fact,
[l utwh,a)do = [ JaP flayde 2803 gy o015 - 1)
RN RN Jj=1

= / 2|2 f(2)dx + 2T (2) Nh*E* T (n — 1),

RN

where used (ix) of Proposition 4.5.

6. Asymptotic decay and large-time behavior of solutions for the fractional diffusion equation in discrete
time

Now we will present the asymptotic decay of the solution of (5.1) (which is given by (5.3)) in L? spaces
and the corresponding large-time behavior.

6.1. Asymptotic decay
In this part we show the following estimates of the fundamental solution G, in LP-spaces. Finally we

also state LP-estimates for VGy',, which are useful for study the large time behaviour of solutions of (5.1)
in Lebesgue spaces.
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Lemma 6.1. Let 0 < o < 1. Then there exists C, > 0 such that

1G5 nllp < Cp n €N,

1
(nh)°z (1=1/p)’
forp € [1,00] if N =1, for p € [1,00) if N =2, and for p € [1, i25) if N > 2.

Proof. It is well known (see [24, p.334 (3.326)]) that there exists C, (independent of ¢) such that ||G¢||, =
Cpﬁ. Then for n large enough and the values of p given in the hypothesis, by (5.5) and [5, Theorem
2 P

3 (vi)] one gets

C yi t N 1 I'n—az(l-7 C
1G5l < s [ ometombota =, N 20 6
hnT'(n) ) R ( _E)F(n) (nh)*=z1=%)

where we have applied the asymptotic behavior of the Gamma function (see [16]). Since the function Gy ),
belongs to LP(R™) for all n € N, then the result is valid for all n € N. 0O

Next, let us present a result about the L? — L9 asymptotic decay for u.

Theorem 6.2. Let 1 < q < p < oco. If f € LY(RY), then the solution u of (5.1) satisfies

(i) If g = oo, then |[u(nh,)]o < | flloo-
(1) If 1 < g < oo and N > 2q, then for each p € [g, —N]\i‘éq)

1
. < —_— . .
o < Ot Il (6.1
(7i) If 1 < ¢ < oo and N = 2q, then for each p € [q,00) the estimate (6.1) holds.
(iv) If1 < q< oo and N < 2q, then for each p € [q, 0| the estimate (6.1) holds.

Here, C, is a constant independent of h and n.
Proof. Take r > 1 such that 1+ 1/p =1/¢+ 1/r, and applying Young’s inequality we get

[u(nh, )lp = 1Gnn * fllp < 1G5 w111 f]lq-

Now, we apply Lemma 6.1 to estimate ||y} ;, ||. For the case (i), if ¢ = oo, then p = co,r = 1, and therefore
since Hgah||1 =1, the result follows Note that in the case (i7), if 1 < ¢ < oo and N > 2¢, then the condition
I=p<y
(iv) follow in a similar way. O

q implies 1 < 7 < {~5. So, by Lemma 6.1 we get the desired estimates. The cases (4ii) and

Lemma 6.3. Let 0 < o < 1. Then there exists C, > 0 such that

1
(nh)%(l—l/m% ’

IVGanlly < Cp n €N,

forpe[l,00) if N =1, and forp € [1, —) if N> 1.

Proof. The proof is similar to the proof of Lemma 6.1 by use of | VG|, = C,
(3.326)]). O

(see [24, p.334

;3 a- 1>+1/2
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6.2. Large-time behavior of solutions

In this part we study the asymptotic behavior of solution w of problem given by (5.1). Suppose f €
LY(RM). Set

M = / F(z) da.
Ex

Before to show the main result of this section, we need the following decomposition lemma (see [14]).

Lemma 6.4. Suppose f € L*(RN) such that [gn |z||f(2)|dx < co. Then there exists F € L*(RY;RY) such

that
fo (R/ f(@)de | 6o + divF

in the distributional sense and

IFlisavan < Cx [ fallf(a)de
RN

Theorem 6.5. Let 1 < p < oo and u be the solution of (5.1).
(i) Then

o (1-1) a
(nh) 2 ?)||u(nh,-) — Mgthp —0, as n— oo,

forpe[l,00) if N =1, and forp € [1,%) if N >1,
(ii) Suppose in addition that |x|f € L*(R), then
(nh)“E 00 Ju(nh, ) = MGR |, < (nh)~2,

forpe[l,00) if N =1, andforpe[l,%) if N> 1.

Proof. First we prove assertion (i7). Since that f, |z|f € L*(R¥), by decomposition Lemma 6.4 there exists
Y € LY RY;RY) such that

u(nh,z) = (G, p * (Mo + dive(-))) ()
= MGy () + (VGy ), ) (),

in the distributional sense, and

)i < Cwlllz|f ()] < oo.

Lemma 6.3 implies that

1
(nh) % 1=1/p)+35’

[u(nh,-) = MGy llp < CN VG54

pllef (@)l < Cnp.s (6.2)
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Hence the assertion (i¢) is proved.
To prove (i), we choose a sequence (n;) C C§°(R") such that [py 7;(z)dz = M for all j, and n; — f in
LY(RY). For each j, by Lemma 6.1 and (6.2), we get

lu(nh, ) = MGy pllp < NGan* (f = ni)llp + 1G5 % 15 — MGE I

< NG wllpllf =5l + 1G5 5 * 0 — MGyl

1 1
Gy 1 =il oy ey

<G,

Then

lim sup (nh) 2 C=YP |lu(nh, ) — MG, |, < Collf — 51

n—oo

The assertion follows by letting j — co. O
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