

Journal of Interdisciplinary Mathematics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjim20

On *cc*-sets and decomposition of continuity via bioperations

B. Brundha, C. Carpintero, N. Rajesh & E. Rosas

To cite this article: B. Brundha, C. Carpintero, N. Rajesh & E. Rosas (2022): On £C-sets and decomposition of continuity via bioperations, Journal of Interdisciplinary Mathematics, DOI: 10.1080/09720502.2022.2059927

To link to this article: https://doi.org/10.1080/09720502.2022.2059927

Journal of Interdisciplinary Mathematics

ISSN: 0972-0502 (Print), ISSN: 2169-012X (Online)

DOI: 10.1080/09720502.2022.2059927

On \mathcal{LC} -sets and decomposition of continuity via bioperations

B. Brundha[†]

Department of Mathematics Government Arts College For Women Orathanadu 614625 Tamil Nadu India

C. Carpintero *

Facultad de Ciencias Básicas Corporación Universitaria del Caribe-CECAR 700009 Sincelejo Colombia

N. Rajesh §

Department of Mathematics Rajah Serfoji Govt. College Thanjavur 613005 Tamilnadu India

E. Rosas ‡

Departamento de Ciencias Naturales y Exactas Universidad de la Costa 080001 Barranquilla Colombia

^t E-mail: brindamithunraj@gmail.com

^{*} E-mail: carpintero.carlos@gmail.com (Corresponding Author)

[§] E-mail: saijbhuvana@gmail.com

[†] E-mail: ennisrafael@gmail.com

Abstract

The aim of the present paper is to introduce and study the notions of \mathcal{LC} -set and \mathcal{LC} -continuity via biopeation. We discuss some properties of these notions.

Subject Classification: (2010) 54A05, 54C08.

Keywords: LC-set, LC-continuity, A-set, A-continuity.

1. Introduction

Several generalizations or extensions derived from the classical notion of open set studied in General Topology are now the research topics of many topologists worldwide. Indeed a large number of interesting works in General Topology and Real analysis concerns the various modified forms of continuity, separation axioms etc. by using different classes of generalized open sets. Kasahara [1] introduced the concept of an operation on topological spaces. Umehara et al. [5] defined the notion of $\tau_{(\gamma, \gamma')}$ which is the collection of all (γ, γ') -open sets in a topological space (X, τ) . More rencently, Carpintero et al. [3] introduced some new types of sets via bioperations and obtained a new decomposition of bioperation-continuity. In this paper, we introduce some new types of sets in bioperation-topological space. Also we discuss some properties and characterization of these new notions. The aim of the present paper is to introduce and study notions of \mathcal{LC} -set and \mathcal{LC} -continuity via bioperations.

2. Preliminaries

In this section we establish the basic notions to use in this paper. We refer to [2] for more details about notations and terminologies. However, we give the following preliminaries definitions.

Definition 2.1: [1] Let (X, τ) be a topological space. An operation γ on the topology τ is function from τ into the power set $\mathcal{P}(X)$ of X such that $V \subset V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of τ at V. It is denoted by $\gamma : \tau \to \mathcal{P}(X)$.

A bioperation-topological space is denoted by $(X, \tau, \gamma, \gamma')$, where (X, τ) is a topological space equipped with two operations, say, γ and γ' defined on τ .

Definition 2.2: A subset *A* of a bioperation-topological space $(X, \tau, \gamma, \gamma')$ is said to be (γ, γ') -open set [5] if for each $x \in A$ there exist open

neighborhoods U and V of x such that $U^{\gamma} \cup V^{\gamma'} \subset A$. The complement of a (γ, γ') -open set is called a (γ, γ') -closed set. $\tau_{(\gamma, \gamma')}$ denotes set of all (γ, γ') -open sets in $(X, \tau, \gamma, \gamma')$.

Definition 2.3 : [5] For a subset A of a bioperation-topological space $(X, \tau, \gamma, \gamma')$, we have the following

- $(1) \quad (\gamma, \gamma') Cl(A) = \bigcap \{F : A \subset F, X \setminus F \in \tau_{(\gamma, \gamma')}\}.$
- $(2) \ (\gamma,\gamma') Int(A) = \cup \{U: U \subset A, U \in \tau_{(\gamma,\gamma')}\}.$

Definition 2.4 : Let (X, τ) be a topological space and A be a subset of X and γ' and γ' be operations on τ . Then A is said to be

- (1) (γ, γ') α -open if $A \subset (\gamma, \gamma')$ $Int((\gamma, \gamma')$ $Cl((\gamma, \gamma')$ Int(A))),
- (2) (γ, γ') -semi-open if $A \subset (\gamma, \gamma')$ $Int((\gamma, \gamma')$ $Cl((\gamma, \gamma')$ Int(A))),
- (3) (γ, γ') -preopen [2] if $A \subset (\gamma, \gamma')$ $Int((\gamma, \gamma')$ Cl(A)),
- (4) (γ, γ') -semi-preopen if $A \subset (\gamma, \gamma')$ - $Cl((\gamma, \gamma')$ - $Int((\gamma, \gamma')$ -Cl(A))),
- (5) (γ, γ') -regular open if $A = (\gamma, \gamma')$ $Int((\gamma, \gamma')$ Cl(A)),
- (6) (γ, γ') \mathcal{A} -set if $A = G \cap H$, where $G \in \tau_{(\gamma, \gamma')}$ and H is a (γ, γ') -regular closed set.
- (7) (γ, γ') -t-set [4] if (γ, γ') $Int((\gamma, \gamma')$ $Cl(A)) = \gamma, \gamma'$)- Int(A),
- (8) (γ, γ') \mathcal{B} -set [4] $A = G \cap H$, where $G \in \tau_{(\gamma, \gamma')}$ and H is a t-set.

The complement of (γ, γ') -regular open set is called a (γ, γ') -regular closed set. The family of all (γ, γ') -open (resp. (γ, γ') - α -open, (γ, γ') -semi-open, (γ, γ') -preopen) sets of $(X, \tau, \gamma, \gamma')$ is denoted by $\tau_{(\gamma, \gamma')}$ (resp. $\alpha\tau_{(\gamma, \gamma')}$, $s\tau_{(\gamma, \gamma')}$, $p\tau_{(\gamma, \gamma')}$). The set of all (γ, γ') -A-sets of $(X, \tau, \gamma, \gamma')$ is denoted by A.

Definition 2.5: A function $f:(X,\tau,\gamma,\gamma') \rightarrow (Y,\sigma,\beta,\beta')$ is said to be

- (1) (γ, γ') - (β, β') -continuous if $f^{-1}(V)$ is (γ, γ') -open in X for every $V \in \sigma_{(\beta, \beta)}$,
- (2) (γ, γ') - (β, β') - α -continuous if $f^{-1}(V)$ is (γ, γ') - α -open in X for every $V \in \sigma_{(\beta,\beta)}$,
- (3) (γ, γ') - (β, β') -semi-continuous if $f^{-1}(V)$ is (γ, γ') -semi-open in X for every $V \in \sigma_{(\beta,\beta)}$,
- (4) (γ, γ') - (β, β') -precontinuous if $f^{-1}(V)$ is (γ, γ') -preopen in X for every $V \in \sigma_{(\beta, \beta)}$,

- (5) (γ, γ') (β, β') \mathcal{A} -continuous if $f^{-1}(V)$ is (γ, γ') \mathcal{A} -open in X for every $V \in \sigma_{(\beta,\beta)}$,
- (6) (γ, γ') (β, β') \mathcal{B} -continuous [4] if $f^{-1}(V)$ is (γ, γ') \mathcal{B} -open in X for every $V \in \sigma_{(\beta,\beta)}$.

3. Properties of \mathcal{LC} -sets

Definition 3.1: A subset A of a bioperation-topological space $(X, \tau, \gamma, \gamma')$ is said to be a locally (γ, γ') -closed set if $A = G \cap H$ where G is a (γ, γ') -open and H is a (γ, γ') -closed. The set of all (γ, γ') - \mathcal{LC} -sets denoted by \mathcal{LC} .

Remark 3.2:

- (1) Every (γ, γ') -open set as well as a (γ, γ') -closed set is locally (γ, γ') -closed.
- (2) Finite intersection of locally (γ, γ') -closed sets is locally (γ, γ') -closed.

Theorem 3.3 : Let $(X, \tau, \gamma, \gamma')$ be a bioperation-topological space and $N \subset X$. Then $N \in \mathcal{LC}$ if, and only if there exists a (γ, γ') -open set G such that $N = G \cap (\gamma, \gamma') - Cl(N)$.

Proof: Let *N* be a (γ, γ') -closed set of $(X, \tau, \gamma, \gamma')$. Then $N = G \cap A$ where *G* is (γ, γ') -open and *A* is (γ, γ') -closed in (X, τ) . We have (γ, γ') - $Cl(S) \subset A$. Thus, $N = N \cap (\gamma, \gamma')$ - $Cl(N) = G \cap A \cap (\gamma, \gamma')$ - $Cl(N) = G \cap (\gamma, \gamma')$ -Cl(N). Let $N = G \cap (\gamma, \gamma')$ -Cl(N) where *G* is a (γ, γ') -open in $(X, \tau, \gamma, \gamma')$. Then *N* is (γ, γ') -closed since (γ, γ') -Cl(N) is (γ, γ') -closed. □

Theorem 3.4: Let $(X, \tau, \gamma, \gamma')$ be a bioperation-topological space and $K \subset L \subset X$. If L is locally (γ, γ') -closed, then there exists a locally (γ, γ') -closed set M such that $K \subset M \subset L$.

Proof: Since L is (γ, γ') -closed, $L = S \cap (\gamma, \gamma')$ - Cl(L) where S is (γ, γ') - open. Since $K \subset L$, then $K \subset S$ and $K \subset (\gamma, \gamma')$ - Cl(K). We have $K \subset S \cap (\gamma, \gamma')$ - Cl(K). If we take $M = S \cap (\gamma, \gamma')$ - Cl(K), hence $K \subset M \subset L$.

Theorem 3.5: Let $(X, \tau, \gamma, \gamma')$ be a bioperation-topological space and $K \subset X$. If K is a locally (γ, γ') -closed set, then there exists a (γ, γ') -closed set L in X such that $K \cap L = \emptyset$.

Proof: Let $K = M \cap N$ where M is (γ, γ') -open and N is (γ, γ') -closed in $(X, \tau, \gamma, \gamma')$. Suppose $L = N \setminus M$. Hence L is (γ, γ') -closed and $K \cap L = \emptyset$.

Theorem 3.6: Let (X,τ,γ,γ') be a bioperation-topological space and let $A,B \subset X$ such that A is (γ,γ') -open and B is (γ,γ') -closed in X. Then there exists a (γ,γ') -open set C and a (γ,γ') -closed set D such that $A \cap B \subset D$ and $C \subset A \cup B$.

Proof: Let $D = (\gamma, \gamma') - Cl(A) \cap B$ and $C = A \cup (\gamma, \gamma') - Int(B)$. Then D is (γ, γ') -closed and C is (γ, γ') -open. $A \subset (\gamma, \gamma') - Cl(A)$ implies $A \cap B \subset D$ and $(\gamma, \gamma') - Int(B) \subset B$ implies $C \subset A \cup B$. Hence, $A \cap B \subset D$ and $C \subset A \cup B$.

Theorem 3.7 : For a bioperation-topological space $(X, \tau, \gamma, \gamma')$, the following properties are equivalent:

- (1) $A \in \mathcal{LC}$,
- (2) $A = T \cap (\gamma, \gamma') Cl(A)$ for some (γ, γ') -open set T,
- (3) (γ, γ') - $Cl(A) \setminus A$ is (γ, γ') -closed,
- (4) $A \cup (X \setminus (\gamma, \gamma') Cl(A))$ is (γ, γ') -open,
- (5) $A \subset (\gamma, \gamma') Int(A \cup (X \setminus (\gamma, \gamma') Cl(A))).$

Proof: $(1) \Leftrightarrow (2)$: It follows from Theorem 3.3.

- $(2) \Rightarrow (3): \qquad (\gamma, \gamma') (\gamma, \gamma') Cl(A) \cap (X \setminus A) = (\gamma, \gamma') Cl(A) \cap (X \setminus T)$ which is (γ, γ') -closed.
- $(3) \Rightarrow (4): \quad A \cup (X \setminus (\gamma, \gamma') Cl(A)) = X \setminus ((\gamma, \gamma') Cl(A) \setminus A). \quad \text{Hence} \\ A \cup (X \setminus (\gamma, \gamma') Cl(A)) \text{ is a } (\gamma, \gamma') \text{-open.}$
- $(4) \Rightarrow (5)$: Since $A \cup (X \setminus (\gamma, \gamma') Cl(A))$ is (γ, γ') -open, $A \subset (\gamma, \gamma') Int(A \subset (X \setminus (\gamma, \gamma') Cl(A)))$.
- $(5) \Rightarrow (1): \text{ Since } A \subset (\gamma, \gamma') Int(A \cup (X \setminus (\gamma, \gamma') Cl(A))), \text{ then } A = (\gamma, \gamma') Int(A \cup (X \setminus (\gamma, \gamma') Cl(A))) \cap ((\gamma, \gamma') Cl(A)). \text{ Hence, } A \in \mathcal{LC}.$

Theorem 3.8 : A subset F of a bioperation-topological space $(X, \tau, \gamma, \gamma')$ is a (γ, γ') - A -set if, and only if it is both (γ, γ') -semi-open and (γ, γ') - \mathcal{LC} -set.

Proof: Let F be a (γ, γ') - A -set, so $F = G \cap H$ where $G \in \tau_{(\gamma, \gamma')}$ and $H = (\gamma, \gamma')$ - $Cl((\gamma, \gamma')$ - Int(H)). Then $F \in \mathcal{LC}$. Now (γ, γ') - $Int(F) = (\gamma, \gamma')$ - $Int(G) \cap (\gamma, \gamma')$ - $Int(H) = G \cap (\gamma, \gamma')$ - Int(H), so that $F = G \cap (\gamma, \gamma')$ - $Cl((\gamma, \gamma')$ - $Int(H)) = (\gamma, \gamma')$ - $Cl((\gamma, \gamma')$ - $Int(H)) = (\gamma, \gamma')$ - $Cl((\gamma, \gamma'))$ - $Int(\gamma, \gamma')$ - $Int(\gamma,$

- Int(F)). Therefore, F is a (γ,γ') -semi-open set. Conversely, let F be (γ,γ') -semi-open and \mathcal{LC} -set, so that $F \subset (\gamma,\gamma')$ - $Cl((\gamma,\gamma')$ -Int(F)) and $F = G \cap (\gamma,\gamma')$ -Cl(F) where $G \in \tau_{(\gamma,\gamma')}$. Then (γ,γ') - $Cl(F) = (\gamma,\gamma')$ - $Cl((\gamma,\gamma')$ -Int(F)) and (γ,γ') - $Cl(F) = (\gamma,\gamma')$ - $Cl((\gamma,\gamma')$ - $Int((\gamma,\gamma')$ -Cl(F))), so (γ,γ') -Cl(F) is (γ,γ') -regular closed. Hence F is a (γ,γ') - \mathcal{A} -set.

The following examples show that (γ, γ') -semi-open sets and (γ, γ') - \mathcal{LC} -sets are independent of each other.

Example 3.9 : Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. We define the operations $\gamma, \gamma' : \tau \to \mathcal{P}(X)$ as follows

$$A^{\gamma} = \begin{cases} A & \text{if } a \in A, \\ A \cup \{a\} & \text{if } a \notin A, \end{cases} \text{ and } A^{\gamma'} = \begin{cases} A & \text{if } a \in A, \\ Cl(A) & \text{if } a \notin A. \end{cases}$$

Then $\{b\}$ is a (γ, γ') - \mathcal{LC} -set but not (γ, γ') -semi-open. Also $\{a, c\}$ is (γ, γ') -semi-open but not (γ, γ') - \mathcal{LC} -set.

Theorem 3.10 : For a bioperation-topological space $(X, \tau, \gamma, \gamma')$, the following properties are equivalent:

- (1) F is a (γ, γ') -open.
- (2) F is both (γ, γ') α -open and (γ, γ') \mathcal{LC} -set.
- (3) F is both (γ, γ') -pre-open and (γ, γ') - \mathcal{LC} -set.

 $Proof: (1) \Rightarrow (2) \Rightarrow (3)$: Obvious.

(3) \Rightarrow (1): Let F be (γ, γ') -pre-open and (γ, γ') - \mathcal{LC} -set, so that $F \subset (\gamma, \gamma')$ - $Int((\gamma, \gamma')$ -Cl(F)) and $F = G \cap (\gamma, \gamma')$ -Cl(F). Then $F \subset G \cap (\gamma, \gamma')$ - $Int((\gamma, \gamma')$ - $Cl(F)) = (\gamma, \gamma')$ - $Int(G \cap (\gamma, \gamma')$ - $Cl(F)) = (\gamma, \gamma')$ -Int(F), hence F is (γ, γ') -open.

Remark 3.11 : For a bioperation-topological space $(X, \tau, \gamma, \gamma')$, we have the following

- (1) $\mathcal{A} = s\tau_{(\gamma,\gamma')} \cap \mathcal{LC}$.
- (2) $\tau_{(\gamma,\gamma')} = \alpha \tau_{(\gamma,\gamma')} \cap \mathcal{LC}$
- (3) $\tau_{(\gamma,\gamma')} = p\tau_{(\gamma,\gamma')} \cap \mathcal{LC}$.
- (4) $\tau_{(\gamma,\gamma')} = p\tau_{(\gamma,\gamma')} \cap \mathcal{A}$.
- (5) $\alpha \tau_{(\gamma,\gamma')} = p \tau_{(\gamma,\gamma')} \cap s \tau_{(\gamma,\gamma')}$.

Definition 3.12: A subset *A* of a bioperation-topological space $(X, \tau, \gamma, \gamma')$ is said to be generalized (γ, γ') -closed if (γ, γ') - $Cl(A) \subset U$ whenever $A \subset U$ and *U* is (γ, γ') -open in *X*. The complement of a generalized (γ, γ') -closed set is called a generalized (γ, γ') -open set.

Theorem 3.13: A subset A is (γ, γ') -closed if and only if it is generalized (γ, γ') -closed and locally (γ, γ') -closed.

Proof: Suppose that A is a (γ, γ') -closed set in X. Let $A \subset U$ where U is (γ, γ') -open in X. Then $(\gamma, \gamma')Cl(A) = A \subset U$. Thus A is generalized (γ, γ') -closed. Since A is (γ, γ') -closed it is locally (γ, γ') -closed. Conversely suppose that A is generalized (γ, γ') -closed and locally (γ, γ') -closed. Thus $A = U \cap F$, where U is (γ, γ') -open and F is (γ, γ') -closed. So $A \subset U$ and $A \subset F$. So by hypothesis (γ, γ') - $Cl(A) \subset U$ and (γ, γ') - $Cl(A) \subset (\gamma, \gamma')$ -Cl(F) = F. Thus (γ, γ') - $Cl(A) \subset U \cap F = A$. Thus A is (γ, γ') -closed. \square

Proposition 3.14 : Every locally (γ, γ') -closed set is a (γ, γ') - \mathcal{B} -set.

Proof: Let A be a locally (γ, γ') -closed subset of X. Then $A = U \cap F$, where U is (γ, γ') -open in X and F is (γ, γ') -closed. Then $A = (\gamma, \gamma')$ -Cl(A). Thus (γ, γ') - $Int(A) = (\gamma, \gamma')$ - $Int((\gamma, \gamma')$ -Cl(A)). Therefore A is a (γ, γ') -t-set. Hence A is a (γ, γ') -t-set.

The following example, shows that the converse of Proposition 3.14 is not true.

Example 3.15 : Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. We define the operations $\gamma, \gamma' : \tau \to \mathcal{P}(X)$ as follows

$$A^{\gamma} = \begin{cases} A & \text{if } b \notin A, \\ Cl(A) & \text{if } b \in A, \end{cases} \text{ and } A^{\gamma'} = \begin{cases} Cl(A) & \text{if } b \notin A, \\ A & \text{if } b \in A. \end{cases}$$

Clearly, $\{b,c\}$ is (γ,γ') - \mathcal{B} -set but not (γ,γ') -closed set.

4. Properties of \mathcal{LC} -continuity

Definition 4.1: A function $f:(X,\tau,\gamma,\gamma')\to (Y,\sigma,\beta,\beta')$ is said to be $(\gamma,\gamma')-(\beta,\beta')-\mathcal{LC}$ -continuous if $f^{-1}(V)$ is $(\gamma,\gamma')-\mathcal{LC}$ -set in X for every $V\in\sigma_{(\beta,\beta)}$.

Theorem 4.2: Every (γ, γ') - (β, β') - \mathcal{A} -continuous function is (γ, γ') - (β, β') - \mathcal{LC} -continuous.

Proof: Obvious.

The following example shows that the converse of Theorem 4.2 is not true.

Example 4.3 : Let $X = \{a,b,c\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a,b\}, X\}$ and $\sigma = \{\emptyset, \{b\}, X\}$. We define the operations $\gamma, \gamma' : \tau \to \mathcal{P}(X)$ as follows

$$A^{\gamma} = \begin{cases} A & \text{if } a \in A, \\ A \cup \{a\} & \text{if } a \notin A, \end{cases} \text{ and } A^{\gamma'} = \begin{cases} A & \text{if } a \in A, \\ Cl(A) & \text{if } a \notin A. \end{cases}$$

We define the operations β , β' : $\tau \to \mathcal{P}(X)$ as follows

$$A^{\beta} = \begin{cases} A & \text{if } b \in A, \\ Cl(A) & \text{if } b \notin A, \end{cases} \text{ and } A^{\beta'} = \begin{cases} A & \text{if } b \in A, \\ A \cup \{b\} & \text{if } b \notin A. \end{cases}$$

Then the identity function $f:(X,\tau,\gamma,\gamma')\to (Y,\sigma,\beta,\beta')$ is a $(\gamma,\gamma')-(\beta,\beta')-\mathcal{LC}$ -continuous but not $(\gamma,\gamma')-(\beta,\beta')-\mathcal{A}$ -continuous.

Proposition 4.4 : Every (γ, γ') - (β, β') - \mathcal{LC} -continuous function is (γ, γ') - (β, β') - \mathcal{B} -continuous.

Proof: The proof follows from Proposition 3.14.

Theorem For a function $f:(X,\tau,\gamma,\gamma') \to (Y,\sigma,\beta,\beta')$, we have the following

- (1) f is a (γ, γ') - (β, β') - \mathcal{A} -continuous if, and only if it is both (γ, γ') - (β, β') -semi-continuous and (γ, γ') - (β, β') - \mathcal{LC} -continuous.
- (3) f is a (γ, γ') - (β, β') -continuous if, and only if it is both (γ, γ') - (β, β') -precontinuous and (γ, γ') - (β, β') - \mathcal{LC} -continuous.
- (4) f is a (γ, γ') - (β, β') -continuous if, and only if it is both (γ, γ') - (β, β') -precontinuous and (γ, γ') - (β, β') -A-continuous.
- (5) f is a (γ, γ') - (β, β') - α -continuous if, and only if it is both (γ, γ') - (β, β') -precontinuous and (γ, γ') - (β, β') -semi-continuous.

Proof: The proof follows from Remark 3.11.

Theorem 4.6: A function $f:(X,\tau,\gamma,\gamma') \to (Y,\sigma,\beta,\beta')$ is a (γ,γ') - (β,β') - \mathcal{A} -continuous if, and only if it is both (γ,γ') - (β,β') -semi-continuous and (γ,γ') - (β,β') - \mathcal{LC} -continuous.

Proof: The proof follows from Theorem 3.8.

Theorem 4.7 For a function $f:(X,\tau,\gamma,\gamma')\to (Y,\sigma,\beta,\beta')$, , the following properties are equivalent:

- (1) f is a (γ, γ') - (β, β') -continuous.
- (2) f is both (γ, γ') - (β, β') - α -continuous and (γ, γ') - (β, β') - \mathcal{LC} -continuous.
- (3) f is both (γ, γ') - (β, β') -precontinuous and (γ, γ') - (β, β') - \mathcal{LC} -continuous.

Proof: The proof follows from Theorem 3.10.

Conclusion

- (1) The locally (γ, γ') -closed sets are defined, studied and characterized.
- (2) The (γ, γ') -open sets are characterized.
- (3) The (γ, γ') - (β, β') - \mathcal{LC} -continuous functions are defined, studied, characterized and some relationships with another well known (γ, γ') - (β, β') -continuous functions are studied..

References

- [1] S.Kasahara, Operation-compact spaces, *Math. Japonica* 24 (1979), 97-105.
- [2] C. Carpintero, N. Rajesh and E. Rosas, On a class of (γ, γ') -preopen sets in a topological space, *Fasciculi Mathematici*, 46 (2011), 25-35.
- [3] C. Carpintero, N. Rajesh and E. Rosas, On Decomposition of Bioperation-Continuitya, Comptes rendus de LAcadémie bulgare des Sciences, Tome 73,(4) (2020), 443-450.
- [4] C. Carpintero, N. Rajesh, E. Rosas and B. Brundha, A New Decomposition of Bioperation-Continuity (submitted).
- [5] J. Umehara, H. Maki and T. Noiri, Bioperation on topological spaces and some separation axioms, Mem. Fac. Sci. Kochi Univ. (A), 13 (1992), 45-59.

Received July, 2021