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ABSTRACT
Hyperspectral Remote Sensing (HRS) is an emergent, multidisciplinary paradigm with several
applications, which are developed on the basis of material spectroscopy, radiative transfer,
and imaging spectroscopy. HRS plays a vital role in agriculture for crops type classification
and soil prediction. The recently developed artificial intelligence techniques can be used for
crops type classification using HRS. This study develops an Intelligent Sine Cosine
Optimization with Deep Transfer Learning Based Crop Type Classification (ISCO-DTLCTC)
model. The ISCO-DTLCTC technique comprises initial preprocessing step to extract the
region of interest. The information gain-based feature reduction technique is employed to
reduce the dimensionality of the original hyperspectral images. In addition, a fusion of 3
deep convolutional neural networks models namely, VGG16, SqueezeNet, and Dense-
EfficientNet perform feature extraction process. Furthermore, sine cosine optimization (SCO)
algorithm with Modified Elman Neural Network (MENN) model is applied for crops type clas-
sification. The design of SCO algorithm helps to proficiently select the parameters involved
in the MENN model. The performance validation of the ISCO-DTLCTC model is carried out
using benchmark datasets and the results are inspected under several measures. Extensive
comparative results demonstrated the betterment of the ISCO-DTLCTC model over the state
of art approaches with maximum accuracy of 99.99%.

RÉSUMÉ

La t�el�ed�etection hyperspectrale (HRS) est une technologie �emergente et multidisciplinaire
ayant plusieurs applications d�evelopp�ees sur la base de la spectroscopie des mat�eriaux, du
transfert radiatif et de la spectroscopie des images. L’HRS joue un rôle essentiel en agricul-
ture pour la classification des types de cultures et la pr�evision des sols. Les techniques d’in-
telligence artificielle (IA) r�ecemment d�evelopp�ees peuvent être utilis�ees pour la classification
des types de cultures �a l’aide de HRS. Cette �etude d�eveloppe un mod�ele intelligent d’opti-
misation du sinus-cosinus avec une classification des types de cultures bas�ee sur l’apprentis-
sage par transfert profond (ISCO-DTLCTC). La technique ISCO-DTLCTC comprend une �etape
initiale de pr�etraitement pour extraire la r�egion d’int�erêt (RoI). La technique IGFR
(Information Gain Based Feature Reduction) est utilis�ee pour r�eduire la dimensionnalit�e des
images hyperspectrales originales. Une fusion de trois mod�eles DCNN (Deep Convolutional
Neural Networks), �a savoir VGG16, SqueezeNet et Dense-EfficientNet, effectue un processus
d’extraction des principales caract�eristiques. En outre, l’algorithme d’optimisation du sinus-
cosinus (SCO) avec le mod�ele MENN (Modified Elman Neural Network) est appliqu�e �a la clas-
sification des types de cultures. La conception de l’algorithme SCO permet de s�electionner
efficacement les param�etres impliqu�es dans le mod�ele MENN. La validation des performan-
ces du mod�ele ISCO-DTLCTC est effectu�ee �a l’aide d’ensembles de donn�ees de r�ef�erence et

ARTICLE HISTORY
Received 16 February 2022
Accepted 15 May 2022

CONTACT Jos�e Escorcia-Gutierrez jose.escorcia23@gmail.com
Copyright � CASI

CANADIAN JOURNAL OF REMOTE SENSING
https://doi.org/10.1080/07038992.2022.2081538

http://crossmark.crossref.org/dialog/?doi=10.1080/07038992.2022.2081538&domain=pdf&date_stamp=2022-06-21
https://doi.org/10.1080/07038992.2022.2081538
http://www.tandfonline.com


les r�esultats sont valid�es avec diff�erents param�etres. Les r�esultats d�emontrent l’efficacit�e du
mod�ele ISCO-DTLCTC par rapport aux approches de pointe avec une pr�ecision maximale
de 99,99%.

Introduction

Recently, people have started to acquire hyperspectral
remote sensing (HRS) images using higher spectral
resolution and higher spatial resolution quite easily
(Singh et al. 2020). Since HRS imaging has stronger
solving power for fine spectra, they have wide-ranging
applications (Jamali et al. 2021) in military, environ-
mental, medical, and mining areas. The acquisition of
hyperspectral remote sensing image based on imaging
spectrometer deployed in distinct spaces. It is utilized
for images in the visible, ultraviolet, mid-infrared, and
near-infrared regions of electromagnetic waves. The
imaging spectrometer could image is very narrow and
has many continuous bands, hence all the pixels in
the wavelength range could get a fully emitted or
reflected spectrum (Chasmer et al. 2022). Thus, a
hyperspectral image has the feature of abundant data,
higher spectral resolution, and many bands. The proc-
essing method of hyperspectral remote sensing images
primarily includes transformation, image correction,
dimension reduction, classification, and noise reduc-
tion (Meneghini et al. 2022). Different from normal
images, hyperspectral image is rich in spectral data,
and that reflects the chemical composition and phys-
ical structure of the object of interest that is useful for
image classification. Hyperspectral image classification
is the active part of the study in the hyperspectral
fields (Lu et al. 2020).

Hyperspectral (HS) image classification often suf-
fered from variety of artifacts, namely, limited or
unbalanced training samples, high dimensionality,
mixing pixels, and spectral variability. The Hughes
phenomenon is a common challenge in the supervised
classification method (Uddin et al. 2021). The power
of classification increased with an increasing training
sample. The limited accessibility of the training sam-
ple reduces the classification accuracy with the
increasing feature dimension. Such effect is called as
“Hughes phenomenon” (Thenkabail et al. 2019). It is
familiar that high redundancy and increased data
dimension among features may create problems at the
time of data analysis. Several considerable problems
should be resolved while implementing hyperspectral
image classification. Over the last few years, deep
learning technique has rapidly established and gained
considerable interest.

In comparison with the conventional machine
learning method (ML), deep learning (DL) technique
does not need to artificially design feature patterns
and could automatically learn patterns from data.
Thus, it has been applied effectively in the field of
speech recognition, NLP, autonomous driving, object
detection, and semantic segmentation, and gained out-
standing performance. In recent times, it has been
presented in the fields of HRI classification. The
researcher presented many new DL-based HRS classi-
fication methods. HRS images play a vital role in agri-
cultural processes and are utilized to crop condition
observing, agricultural yield estimating, pest observing,
etc. During the agricultural surveys, the fine classifier
of HRI offers the info of crops distributing (Papp
et al. 2021; Mansour et al. 2021). Fine classifiers of
crops need images with higher spatial and spectral
resolution (Lassalle 2021; Ang and Seng 2021).

This study develops an Intelligent Sine Cosine
Optimization with Deep Transfer Learning Based
Crop Type Classification (ISCO-DTLCTC) model
using HRI. The presented ISCO-DTLCTC technique
involves information gain-based feature reduction
(IGFR) technique to reduce the dimensionality of the
original hyperspectral images. Also, a fusion of 3 deep
convolutional neural networks (DCNN) models,
namely, VGG16, SqueezeNet, and Dense-EfficientNet
models perform feature extraction process. Finally,
sine cosine optimization (SCO) algorithm with modi-
fied Elman Neural Network (MENN) model is applied
for crop type classification. The performance valid-
ation of the ISCO-DTLCTC model is carried out
using benchmark dataset and the results are inspected
under several measures.

Related works

The authors in (Bhosle and Musande 2019) aimed in
examining utilize of DL-CNN for LULC classifier on
Indian Pines data set and for crop identifying on our
survey region data set. During the existing works,
AVIRIS sensor’s Indian Pines standard data set was
utilized for LULC classifier. The study region from
Phulambri, Aurangabad, MH, India, was utilized as to
crop classifier. Wei et al. (2021) presented a fine clas-
sifier technique dependent upon multifeature fusion
and DL. During this case, the morphological profiles,
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GLCM texture, and endmember abundance feature
are leveraged for exploiting the spatial data of hyper-
spectral imagery. Next, several spatial data were fused
with novel spectral data for generating classifier out-
comes by utilizing the DNN with conditional random
field (DNNþCRF) method. In detail, the DNN is a
deep detection method that is extracting depth fea-
tures and mine the possible data.

In Wan et al. (2021), a 2-phase classifier is
designed for displaying the performance of the image
classifier. Specifically, this analysis utilized a multi-
class classifier by SVMþCNN for an image classifier
analysis. SVM is a supervised learning method that
analyzes data utilized to classifier. CNN is a class of
DNNs that is executed for analyzing visual imagery.
In Roy et al. (2021), a novel end-to-end morpho-
logical DL structure (named MorphConvHyperNet)
was established. The presented method capably
approaches non-linear data under the trained proced-
ure of HSI classifier. Especially, this technique com-
prises spectral and spatial morphological blocks for
extracting relevant features in the HSI input data.

Shi et al. (2021) presented a double-branch network
containing a new convolutional called pyramidal con-
volutional (PyConv) and iterative attention process.
All the branches focus on exploiting spectral-spatial
features with distinct PyConvs, improved by the atten-
tion element to refine the feature map. In Sun et al.
(2020), a spectral-spatial attention network (SSAN)
was presented for capturing discriminative spectral-
spatial features in attention regions of HSI cube.
Primary, an easy spectral-spatial network (SSN) was
created for extracting spectral-spatial features in HSI

cubes. Secondary, an attention element was established
for suppressing the effect of interfering pixels.

The proposed model

In this study, a new ISCO-DTLCTC technique has been
developed for the detection and classification of crop
types using HRSs. The presented ISCO-DTLCTC tech-
nique comprises different stages of subprocesses,
namely, preprocessing, region of interest (RoI) extrac-
tion, IGFR-based feature reduction, fusion-based fea-
ture extraction, MENN-based crop classification, and
SCO-based parameter optimization. Figure 1 illustrates
the overall process of ISCO-DTLCTC technique.

Preprocessing

Thresholding was executed utilizing Otsu approach as
it can be extremely utilized for estimating ROI in the
image that comprises the crop region. The outcome of
thresholding was feasible for containing the noise (the
non-crop region that is categorized as the crop
region). Individual noises were feasibly connected/
unconnected to crop objects. For removing the noise,
the morphology of functions is carried out (Zhao
et al. 2020). Individual functions are opening and
closing that are implemented successively utilizing
disk-shaped structuring elements (strel). The opening
function is needed for detaching the linked noise in
the crop region, but the closing function is for
combining and filling from the crop regions that are
classified as background.

Figure 1. The overall process of ISCO-DTLCTC technique.
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Feature reduction

Next to preprocessing, feature reduction process is
performed using IGFR technique. It is mainly utilized
on higher dimension information to estimate the effi-
cacy of attributes in classification. IGFR measures the
worth of attributes by estimating the IGFR of features
regarding the targeted class (Singh and Singh 2021).
Indeed, IGFR calculates the number of data needed
for predicting the targeted class by knowing the
absence or presence of an attribute. Consider the dis-
crete arbitrary parameter y comprises 2 probable
results. The binary entropy function H, shown in
Shannon unit, that is, logarithmic base 2 is character-
ized by Equation (1), whereas pi indicates the likeli-
hood that arbitrary instance y 2 i amongst m classes
in dataset D. pi is assessed by jyiDj=jDj:

H yð Þ ¼ �
Xm

j�1
pilog2 pið Þ (1)

In the course of making decision process, entropy
quantifies the uncertainty of feature. The predicted
data required to categorize sample y according to par-
titioning by a is evaluated by

HðYjXÞ ¼ �
X

a2Xp að Þ
X

y2Yp yað Þlog2pðyjaÞ

¼ �
X

a2X
X

y2Yp a, yð Þlog2p yað Þ (2)

lGðyjaÞ ¼ HðyÞ �HðyjaÞ (3)

Specifically, the IGFR for feature (a) is provided in
Eq. ðReject whereby marginal entropy is embodied as
HðÞ and conditional entropy of y shown a is provided
as HðcjaÞ: The IGFR is a fast filter-based FS approach
whereby the attribute is graded in descending order of
IG score and is carefully chosen according to thresh-
old. High IG implies better discriminatory power for
making decisions (Singh and Singh 2021).

Feature extraction

During feature extraction process, a fusion of 3 DL
models, namely, VGG16, SqueezeNet, and Dense-
EfficientNet models are carried out (Talkhabi et al.
2022; Nayak et al. 2022; Bernardo et al. 2021). VGG-
16 is the best network configuration amongst the
VGGNet constructed by the VGG group. VGG-16
(VGGNet) accomplished accuracy of 92.7% in the
ImageNet ILSVRC2014. Because of its high accuracy
and uniform structure in classification tasks. VGG-16
has a deep network when compared to AlexNet and
comprises 16 trained layers together with 13 convolu-
tion layers and 3 FC layers. The model features a
smooth and homogeneous structure that employs

filter of size 2� 2 pooling with a stride of 2 in each
layer and 3� 3 with a stride of 1 for convolution. The
amount of convolutional filter remains same within
one block and doubles afterward max-pooling layer
from 64 in the first block to 512 in the latter block.

A dense CNN model is a mixture of pretrained
EfficientNetB0 with dense layer. EfficientB0 has 7
MBConv blocks and 230 layers. It features a thick
block structure comprising 4 closely connected layers
with a growth rate of 4. Each layer uses the output
feature map of the previous level as the input feature
map. The dense block concept is comprised of convo-
lutional layer of the same size as input feature maps
in EfficientNet. The dense block uses previous convo-
lutional layer output feature map for generating more
feature maps with some convolutional kernel. The
dense EfficientNet has an alternative dense and drop-
out layer. A dense layer is an elementary layer that
feeds each output from the preceding layer to neuron,
all the neurons provide 1 output to the following
layer. The drop-out layer is utilized for reducing the
capacity or thinning the network at the time of train-
ing and avoiding over-fitting. Then, add a pooling
layer, 3 drop-out layers, and 4 dense layers for ensur-
ing the model work efficiently, the author has utilized
a dense layer composed of 4 FC neurons in combin-
ation with a Softmax output layer to classify and com-
pute the probability score for all the classes.

SqueezeNet is an 18-layer DNN designed with a
small amount of parameters, still maintaining a
higher accuracy. The usage of SqueezeNet assists in
reducing the processing time and the memory con-
sumption for classification than other multi-layer DL
models. They selected the SqueezeNet architecture
because of its lightweight structure, faster training
times, and small amount of parameters. SqueezeNet
is more commonly utilized by researchers for differ-
ent applications. The major benefit of the
SqueezeNet architecture is a fifty times performance
improvement over AlexNet, a standard deep CNN
architecture while maintaining a comparable classifi-
cation performance. To guarantee computation effi-
cacy, the size of convolutional filter has been
minimized from 3� 3 to 1� 1. Consequently, the
amount of trained parameters has been minimized
by 9 times. Therefore, the SqueezeNet architecture is
constructed from module of a similar type, named
“Fire module”. A Fire module encompasses of
squeeze convolutional layer (that has 1� 1 filter)
that feeds into an expanded layer that has a mixture
of 1� 1 and 3� 3 convolutional filters.
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Here, the fusion of 3 DL models takes place for
computing a set of feature vectors. They demonstrates
as follows.

fGLCM1�n

¼ VGG161�1, VGG161�2, VGG161�3, � � � , VGG161�nf g
(4)

fDEFN1�l

¼ DEFN1�1, DEFN1�2, DEFN1�3, � � � , DEFN1�lf g
fSN�m ¼ SN1�1, SN1�2, SN1�3, � � � , SN1�nf g (5)

Then, the resultant feature is combined as to indi-
vidual vector, as provided under.

Fused features vectorð Þ1� q

¼
X3

i¼1
ffGLCM1�n, fDEFN1�l, g fSN�m

(6)

where f is fused vector ð1� 1186Þ:

Crop type classification

At the time of crop type classification, the MENN
model (Song and Wang 2021) is applied to allocate
proper class labels to it. The infrastructure of ENN was
separated into 4 parts such as context unit, input state,
hidden state, and resultant state. The input state is uti-
lized for transmitting the raw data; introduced weighted
data were mapped linearly or non-linearly with the
transfer operation of hidden state; lastly, the processed
data were carried out the linear weight approach from
the resultant state. But, unlike BP-FFNN, ENN added
further the context units for storing the resultant data
of preceding moment of hidden state and feed-back it
to next moment of hidden state (Song and Wang 2021).
Therefore, this network not only improves the sensitiv-
ity to historic information but along has more dynamic
data memory capability than the typical static network
(Song and Wang 2021). The mathematical process of
typical ENN infrastructure is summarized as:

y tð Þ ¼ g w3x tð Þð Þ (7)

xðtÞ ¼ f ðw1xcðtÞ þ w2ðu t � 1ð ÞÞ (8)

xc tð Þ ¼ x t � 1ð Þ (9)

where xðtÞ, yðtÞ, XðtÞ signifies the tth resultant of
hidden state, output state, and context unit, corres-
pondingly. u refers to the input vector of input state.
w1, w2, and w3 signifies the connection weight of
context units to hidden states, input to hidden states,
and hidden to output states correspondingly. f and g
define the transfer operation of hidden and output
states correspondingly. Thus, to enhance the model

efficiency of typical ENN, during this case, the MENN
infrastructure is created. It not only accounts for the
complete data feed-back in the hidden state, along
with the data feedback in the context unit itself.
Further relevant data are fed back to network and the
instance data is examined further comprehensively
which is further conducive to the last classifier. The
mathematical process of MENN infrastructure is
altered from the context unit as follows:

xc tð Þ ¼ a � xc t � 1ð Þ þ x t � 1ð Þ (10)

where a refers to the scalar constant which modulates the
weight of data feedback resultant in the context unit at
the preceding moments. For a ¼ 0, the MENN infra-
structure has essentially typical ENN method and has no
memory of context units. Besides, the cross entropy was
utilized as loss function and determined as follows:

Lðd, yÞ ¼ �
XN

j¼1
½djðtÞ log yjðtÞ

þ ð1� djðtÞÞ log ð1� yjðtÞÞ� (11)

where dðtÞ refers to the target value of novel data and
yjðtÞ has attained resultant value.

Parameter optimization

For optimal parameter selection of the MENN model,
the SCO algorithm has been employed to accomplish
enhanced crop classification performance. As with
other swarm intelligence approaches, in the initialized
phase of SCO algorithm, the population initialization
is arbitrarily produced with the provided solution
space, and the optimum solution is attained from the
initialized population (Abualigah and Diabat 2021).
The next is to repeat the procedure till the end criteria
are attained. Initially, upgrade the adoptive parameter
r1 and random parameters including 2, r3, and r4
are given in the following

r1 ¼ a� t � a=tmax

r2 ¼ 2 �p � randð Þ (12)

r3 ¼ 2 � randðÞ
r4 ¼ randðÞ

Where as a is equivalent to 2; t and tma�: mean the
existing iteration and the maximal iteration, corres-
pondingly; rand0 is utilized for producing the arbi-
trary value within½0, 1�, and p shows a constant. Next,
the position of agent is upgraded as follows.

Xtþ1
i, j ¼ XT

i, j þ r1 � sin ðr2Þ � jr3 �PT
j � XT

i, jj
XT
i, j þ r1 � cos ðr2Þ � jr3 �PT

j � XT
i, jj

(
(13)
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Here Xtþ1
i, j and Xt

i, j indicates the jth parameter of ith
agent at t th iteration and ðt þ 1Þth iteration, correspond-
ingly; and Pt

j implies the jth variable of optimum solution
at the tth iteration. Lastly, the cross-border process is
implemented to guarantee that each agent is in the poten-
tial region. When there is an agent i.e., superior to the
optimum solution, the optimum solution is upgraded by
this agent. The pseudocode of the fundamental SCO algo-
rithm is given in Algorithm 1.

Algorithm 1. Pseudocode of SCO algorithm
Input: Population size, N; Problem dimension, D;
Lower boundary, lb; the upper boundary, ub; the
maximal iteration tmax

Output: Optimum solution P:
Arbitrarily initialize the population Xi i ¼ 1, 2, :::, Nð Þ
within limits, ub and lb, estimate the initialized popu-
lation, attain the optimum solution P, t ¼ 1:

while t <¼ tmax: do
Upgrade the parameter r1:
for i ¼ 1 to N

Upgrade the parameters r2, r3, and r4:
Upgrade the location Xi:

end for
Amend the location of all the agents within the limits.
Estimate the existing population.
Upgrade the optimum solution P:

t ¼ t þ 1:

end while
Return the optimum solution P:

The SCO approach develops a FF for attaining
enhanced classified performance. It resolves a positive
integer for signifying an optimal performance of can-
didate solutions. During this case, the minimization

Figure 2. Sample images: (a) original image and (b) ground truth.

6 ESCORCIA-GUTIERREZ ET AL.



of classifier error rate was assumed that FF is offered
in Equation (14). Optimum solutions have a lower
error rate and worst solution gains an enhanced
error rate.

fitness xið Þ ¼ ClassifierErrorRate xið Þ

¼ number of misclassified images
Total number of images

� 100 [14]

Figure 3. Result analysis of ISCO-DTLCTC technique under 3 datasets: (a) accuracy-INB dataset, (b) loss-INB dataset, (c) accuracy-
UPB dataset, (d) loss-UPB dataset, (e) accuracy-SSB dataset, and (f) loss-SSB dataset.

CANADIAN JOURNAL OF REMOTE SENSING 7



Experimental validation

The performance validation of the ISCO-DTLCTC model
is validated using the Indian Pines Benchmark (INB)
(Kuo et al. 2014), University of Pavia Benchmark(UPB)
(Luo et al. 2019), and Salinas Scene Benchmark (SSB)
(http://www.ehu.eus/ccwintco/index.php/Hyperspectral_
Remote_Sensing_Scenes). A few sample images are illus-
trated in Figure 2. The proposed model is simulated using
Python tool and the results are investigated under varying
sizes of training and testing data.

Figure 3 offers the accuracy and loss graph analysis
of the ISCO-DTLCTC technique under 3 datasets.
The outcomes outperformed that the accuracy value
tends to increase and loss value tends to decrease with
an increase in epoch count. It can be also observed
that the training loss is low and validation accuracy is
high technique under 3 datasets.

Table 1 and Figure 4 provide an overall crop classi-
fication outcomes of the ISCO-DTLCTC model on

the test INB dataset under distinct training sizes
(TSs). The experimental values indicated that the
ISCO-DTLCTC model has resulted in enhanced clas-
sifier results under all TSs. For instance, with TS of
5%, the ISCO-DTLCTC model has provided OACC of
87.64%, AACC of 85.98%, and kappa of 83.69%.

Table 2 and Figure 5 offer an overall crop classifica-
tion outcomes of the ISCO-DTLCTC model on the test
UPB dataset under different TSs. The experimental val-
ues designated that the ISCO-DTLCTC approach has
resulted in enhanced classifier results under all TSs.
For instance, with TS of 5%, the ISCO-DTLCTC
method has provided OACC of 98.41%, AACC of
97.73%, and kappa of 96.72%.

Table 3 and Figure 6 provide an overall crop classi-
fication outcomes of the ISCO-DTLCTC method on
the test SAB dataset under distinct TSs. The experi-
mental values exposed that the ISCO-DTLCTC
approach has resulted in enhanced classifier results
under all TSs. For instance, with TS of 5%, the ISCO-
DTLCTC methodology has provided OACC of
99.21%, AACC of 99.11%, and kappa of 98.87%.

Table 4 reports the training time (TRT) and testing
time (TST) inspection of the ISCO-DTLCTC model
with existing technique.

Table 1. Result analysis of ISCO-DTLCTC technique under dif-
ferent training sizes on INB dataset.
Training Size (%) Overall Accuracy (%) Average Accuracy (%) Kappa (%)_

5 87.64 85.98 83.69
10 95.23 94.45 93.51
15 98.97 98.19 97.77
20 99.39 99.13 98.76
25 99.85 99.59 99.39
30 99.96 99.85 99.54

Figure 4. Result analysis of ISCO-DTLCTC technique on
INB dataset.

Table 2. Result analysis of ISCO-DTLCTC technique under dif-
ferent training sizes on UPB dataset.
Training Size (%) Overall Accuracy Average Accuracy Kappa

5 98.41 97.73 96.72
10 99.41 98.92 98.80
15 99.78 99.70 99.70
20 99.81 99.76 99.77
25 99.91 99.88 99.85
30 99.91 99.88 99.84

Figure 5. Result analysis of ISCO-DTLCTC technique under
UPB dataset.

Table 3. Result analysis of ISCO-DTLCTC technique under differ-
ent training sizes on SAB dataset.
Training Size (%) Overall Accuracy Average Accuracy Kappa

5 99.21 99.11 98.87
10 99.85 99.62 99.46
15 99.98 99.96 99.96
20 99.98 99.97 99.97
25 99.99 99.98 99.98
30 99.99 99.98 99.98
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Figure 7 portrays the comparative TRT examination
of the ISCO-DTLCTC model with the existing HDSRN
model. The figure indicated that the ISCO-DTLCTC
model has accomplished enhanced outcomes with the
minimal TRT under all datasets. For instance, with INB
dataset, the ISCO-DTLCTC model has offered lower
TRT of 462 seconds, whereas the HDSRN model has pro-
vided higher TRT of 470 seconds. Besides, with UPB
dataset, the ISCO-DTLCTC approach has offered lesser
TRT of 722 seconds, whereas the HDSRN approach has

offered superior TRT of 940 seconds. In addition, with
SAB dataset, the ISCO-DTLCTC model has offered lower
TRT of 761 seconds , whereas the HDSRN technique has
provided higher TRT of 930 seconds.

Figure 8 depicts the comparative TST examination
of the ISCO-DTLCTC model with the existing
HDSRN model. The figure indicated that the ISCO-
DTLCTC model has accomplished enhanced out-
comes with the minimal TST under all datasets. For
instance, with INB dataset, the ISCO-DTLCTC algo-
rithm has obtainable lower TST of 2.10 seconds,
whereas the HDSRN methodology has provided
higher TST of 3 seconds. Also, with UPB dataset, the
ISCO-DTLCTC model has offered lesser TST of
5 seconds, whereas the HDSRN system has provided
higher TST of 8 seconds. Finally, with SAB dataset,
the ISCO-DTLCTC technique has offered lower TST
of 5.30 seconds, whereas the HDSRN model has pro-
vided superior TST of 8 seconds.

Table 5 provides a comprehensive comparative
study of the ISCO-DTLCTC model with recent meth-
ods in terms of overall accuracy (OACC), average
accuracy (AACC), and kappa.

Table 4. Training and testing time analysis of ISCO-DTLCTC
technique under 3 datasets.
Datasets Methods Training Time (s) Testing Time (s)

INB dataset HDSRN 570.00 3.00
ISCO-DTLCTC 462.00 2.10

UPB dataset HDSRN 940.00 8.00
ISCO-DTLCTC 722.00 5.00

SAB dataset HDSRN 930.00 8.00
ISCO-DTLCTC 761.00 5.30

Figure 7. TRT analysis of ISCO-DTLCTC technique under
3 datasets.

Figure 8. TST analysis of ISCO-DTLCTC technique under
3 datasets.

Figure 6. Result analysis of ISCO-DTLCTC technique under
SAB dataset.

Table 5. Comparative analysis of ISCO-DTLCTC technique with
recent approaches in terms of different measures.
Methods Overall Accuracy Average Accuracy Kappa

INB dataset
HDSRN 99.70 99.62 99.70
ISCO-DTLCTC 99.85 99.59 99.39

UPB dataset
HDSRN 99.86 99.84 99.83
ISCO-DTLCTC 99.91 99.88 99.84

SAB dataset
HDSRN 99.97 99.97 99.97
ISCO-DTLCTC 99.99 99.98 99.98
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Figure 9 portrays the OACC results of the ISCO-
DTLCTC model with existing method on distinct
dataset. The results indicated that the ISCO-DTLCTC
model has offered higher OACC compared to
HDSRN model on all datasets. For instance, on INB
dataset, the ISCO-DTLCTC model has gained
increased OACC of 99.85%, whereas the HDSRN
model has offered reduced OACC of 99.70%.
Similarly, on UPB dataset, the ISCO-DTLCTC model
has provided improved OACC of 99.91%, whereas the
HDSRN model has resulted in reduced OACC of
99.86%. Moreover, on SAB dataset, the ISCO-
DTLCTC model has depicted better OACC of 99.99%,
whereas the HDSRN model has provided inferior
OACC of 99.97%.

Figure 10 shows the AACC results of the ISCO-
DTLCTC model with existing method on distinct data-
set. The results exposed that the ISCO-DTLCTC model
has offered higher AACC compared to HDSRN model

on all datasets. For instance, on INB dataset, the ISCO-
DTLCTC model has gained increased AACC of
99.59%, whereas the HDSRN approach has obtainable
reduced AACC of 99.62%. Similarly, on UPB dataset,
the ISCO-DTLCTC model has provided improved
AACC of 99.88%, whereas the HDSRN model has
resulted in reduced AACC of 99.84%. Moreover, on
SAB dataset, the ISCO-DTLCTC system has portrayed
better AACC of 99.98%, whereas the HDSRN algo-
rithm has provided inferior AACC of 99.97%.

Figure 11 represents the kappa results of the ISCO-
DTLCTC system with existing approach on distinct
dataset. The outcomes indicated that the ISCO-
DTLCTC approach has offered higher kappa compared
to HDSRN model on all datasets. For instance, on INB
dataset, the ISCO-DTLCTC model has gained increased
kappa of 99.39%, whereas the HDSRN model has
offered reduced kappa of 99.70%. Also, on UPB data-
set, the ISCO-DTLCTC methodology has provided
enhanced kappa of 99.84%, whereas the HDSRN model
has resulted in reduced kappa of 99.83%. Furthermore,
on SAB dataset, the ISCO-DTLCTC model has
depicted better kappa of 99.98%, whereas the HDSRN
model has provided inferior kappa of 99.97%.

From the above results and discussion, it is ensured
that the ISCO-DTLCTC model can accomplish
enhanced performance over the other methods of
crop classification process.

Conclusion

In this study, a new ISCO-DTLCTC technique has
been developed for the detection and classification of
crop types on HRSs. The presented ISCO-DTLCTC
technique comprises different stages of subprocesses,

Figure 9. OACC analysis of ISCO-DTLCTC technique with
recent approaches.

Figure 10. AACC analysis of ISCO-DTLCTC technique with
recent approaches.

Figure 11. Kappa analysis of ISCO-DTLCTC technique with
recent approaches.
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namely, preprocessing, RoI extraction, IGFR-based
feature reduction, fusion-based feature extraction,
MENN-based crop classification, and SCO-based par-
ameter optimization. The design of SCO algorithm
helps to proficiently select the parameters involved in
the MENN model and thereby results in improved
classification outcomes. The performance validation of
the ISCO-DTLCTC model is carried out using bench-
mark dataset and the results are inspected under sev-
eral measures. Extensive comparative results
demonstrated the betterment of the ISCO-DTLCTC
model over the recent state of art approaches. In the
future, the ISCO-DTLCTC technique can be deployed
for forest fire detection on HRSs. Besides, the per-
formance can be improved by the use of hybrid DL
models. In addition, the proposed model can be
employed in real time crop type mapping classifica-
tion on the IoT environment.
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