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Abstract: The study of the presence of bisphenol analogs in the environment has been very relevant
in recent years because their toxic potential has been discovered, and since they are not regulated
like bisphenol A, their use and presence in industry has been excessive. This study identifies and
quantifies for the first time the presence of bisphenol A and four uncommon bisphenol analogs in
waste from polypropylene (PP) and polyethylene terephthalate (PET) production processes that
may originate from the degradation of some compounds used during resin synthesis in Colombia
to determine the effectiveness of removal of these components. The data obtained show that the
treatments used in these waters are insufficient to eliminate 40% of the bisphenols present in them,
and when evaluating the profiles of compounds, it is clear that the compound with the highest
removal during the PP process was D-BPA-1, while the compound with the highest removal during
the PET process was D-BPA-4, indicating that identification and elimination systems for bisphenols
are rudimentary.

Keywords: bisphenol A; bisphenol analogs; wastewater treatment plants; pollutions; polypropylene
manufacturing

1. Introduction

Bisphenols are molecules widely used at the industrial level, and within bisphenols,
bisphenol A stands out [1], of which the harmful effect it has on the health of human beings
has been evidenced, since it acts as an endocrine disruptor and causes affectations at the
neuronal, immunological, and cardiovascular levels [2,3]. For this reason, regulations and
restrictions have been established for its use in various products in countries such as the
United States and in the European Union [4-6]. However, these regulations only apply to
bisphenol A, so molecules analogous to it that are structurally or physicochemically similar
can be freely used, which has increased its implementation to replace bisphenol A in many
applications at the industrial level [7,8]. Bisphenol analogs (BPs) are chemical compounds
with two hydroxyphenyl functional groups (e.g., bisphenol B, bisphenol F, and bisphenol
C) [9-12] and are applied in a variety of consumer products [9,13]. The concern of the
scientific community and government agencies responsible for public health to investigate
the effects that these substances have on the reproductive systems of living organisms has
also increased [14].

The presence of BPs in the environment has been documented by several authors,
who detected these molecules in drinking water, domestic wastewater, sediments, surface
water from rivers, etc. [8,13,15-19]. Wastewater goes through different processes that
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allow it to have the necessary requirements for its discharge into bodies of water. The
implementation of evaluation systems for the removal effectiveness of BPs in domestic
wastewater treatment plants (WWTPs) and in industrial wastewater treatment plants
(iWWTPs) is of great importance to ensure that there are no dumping substances that are
potentially dangerous to people’s health. Reported efficiencies of up to 100% for these
plants are biased, leaving out a wide range of emerging contaminants that are not removed.

Recent studies have found BPs in different WWTPs throughout the world [18,20,21].
In Latin America, the presence of bisphenols has been reported, with average values
of 1.2 ng/L in drinking water, 183.26 ng/L in wastewater, 4.11 ng/L in drinking water
treatment plants, and 64,200 ng/L in surface water [22,23]. Such values of bisphenol serve
as warnings to the scientific community and public health control agencies that stricter
controls and regulations on the use, disposal, emission, and dumping of BP are required to
ensure the protection of bodies of water and to aim for more sustainable processes. In this
sense, the quantification of the emissions generated in the industrial sector is of interest,
especially in polymer production plants that, year after year, increase their production
volumes and focus their research on monitoring the removal of BPA, but even so, this has
been ineffective because tens of thousands of nanograms per liter of this compound have
been found in industrial wastewater (iWW), including wastewater from paper mills [24,25].
Currently, information related to the identification and quantification of BPs other than BPA
in industrial waste remains scarce, and reports on BPs present in waste from petrochemical
complexes producing polymers such as polypropylene (PP) and polyethylene terephthalate
(PET) are limited, making it difficult to understand the profiles of these molecules from
different industrial sources.

In Colombia, there are PP and PET production plants that have a production capacity
of thousands of tons per year, and in some of these, contaminants of interest have been
found, mainly during the production of polypropylene, which has allowed the observation
of the establishment of analytical techniques to recognize and measure different types of
contaminants [26-35]. For bisphenol, it is becoming increasingly important to be able to
know the levels that are emitted for this contaminant for the implementation of controls
and regulations that guarantee greater safety and sustainability of the processes. Unlike
PP, no BP values have been reported in residues evaluated from PET plants. Due to the
risks to health and the environment that BP generates, it is imperative that the contribution
of PP and PET industrial processes in increasing the concentration of this molecule in the
environment be evaluated.

In this research, industrial wastewater from two plants located in the industrial sector
of Cartagena, Colombia which are producers of PP and PET were selected for the iden-
tification of various levels of bisphenol A and different analogous bisphenols that have
not been reported in previous research. These plants have WWTPs to treat the water from
polymer production, and they have reported that they do not use bisphenol analogs but
do use additives that contain similar molecules which can generate bisphenol analogs
during resin synthesis. The objectives of this research are to investigate the profiles of BPs
in different sources of wastewater and evaluate the removal efficiency of BPs in WWTPs.
This research enables reporting for the first time the presence of BPs other than BPA in
industrial wastewater producing PP and PET in the industrial sector of Colombia.

2. Materials and Methods
2.1. Materials

Table 1 shows the five bisphenols to be identified. BPA (STD1) and its internal stan-
dards were purchased with isotopic labeling BPA-d16 (>99%) from Superlco (Bellefonte, PA,
USA). The four bisphenol A analogs (STD2, STD3, STD4, and STD5) were obtained from
AccuStandard (New Haven, CT, USA). For this research, we worked with an internal stan-
dard of bis (4-hydroxyphenyl) sulfone-d8 (BPS-d8) and acquired it from TRC (Winnipeg,
Canada). Merck (Darmstadt, Germany) purchased HPLC-grade methanol and ammonia
water. The water used was ultrapure and was produced using a Milli-Q purification ap-
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paratus (Veolia, UK). Each target compound’s stock standard solutions were prepared in
methanol and then refrigerated at —20 °C.

Table 1. Bisphenols of interest.

ID Formula Name Structure
BPA Ci5H1607 4,4'-(propane-2,2-diyl) diphenol HOOH
BDAL 4-[2-[4-[2-(4-hydroxyphenyl)propan-2-
D-BPA-1 C24Ho60, yllphenyl]propan-2-yl]phenol
Ao
. ) 4-[2-(4-hydroxyphenyl)propan-2-yl]-2-
D-BPA2 CieHis02 methylphenol HO O Q OH
D-BPA-3 CroH O 4-[2-(4-hydroxyphenyl)propan-2- HO O Q OH
15111623 yllbenzene-1,2-diol
HO
OH
D-BPA-4 CyH05 4-[2-(4-hydroxyphenyl)propan-2-yl]-2-(2-

hydroxypropan-2-yl)phenol
Y yprop yDp OH

I
@)

2.2. Sampling

Industrial wastewater was collected in January 2022. Two sampling points were estab-
lished in the PP production plant, and one sampling point was established in the PET plant.
In the polypropylene plant, the different sources of wastewater from the process that could
contain bisphenols were evaluated, determining two sampling points for the water coming
from the pellet cutting system and the condensate from the pellet deodorization column.
In the PET production plant, the industrial waters entering the iWWTP from PET synthesis
were evaluated. Wastewater samples were collected three times from each processing unit
at 9:00 a.m., 12:00 p.m., and 4:00 p.m. The water samples were then combined and separated
into three parallel samples. The amount of wastewater discharged to each iWWPT unit was
estimated to be approximately 1000 L per day. Industrial wastewater is not pretreated with
a disinfectant such as NaClO or ClO,. These effluents are transferred to iWWPTs through a
pipe network. All of our iWW samples that were collected within this investigation were
stored in glass bottles. After sampling, the iWWs were treated with 4.0 M H,SOy4 to adjust
the pH to 3.0 and then treated them with a 5%, v/v methanol solution to prevent microbial
development. All samples were brought to the lab in ice boxes at a temperature of around
4 °C[36].

2.3. Sample Preparation

A previously established method was used for the extraction and analysis of water sam-
ples [37]. A 0.7-um glass fiber filter (Whatman GF/F) was used to filter the wastewater. The
obtained membranes were transferred to 30-mL glass tubes in pieces, and ultrasonic extrac-
tion was applied for 10 min. As a solvent, methanol was used followed by methanol:water
(5:5 v/v) with 0.1% formic acid. The extracted residue was mixed with the water samples
and spiked with BP standards (100 uL at 1 mg/L each) [36].
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2.4. Treatment of Samples by SPE
2.4.1. Pretreatment

As a method to reduce microbial activity and facilitate sample preparation, they were
then mixed at a temperature of 25 °C and subsequently passed through a 0.22-m Teflon
PTEE filter.

2.4.2. Cleaning and Pre-Concentration

This procedure involved conditioning Strata X-33 cartridges (6 mL, 500 mg) with
methanol and distilled water, with 5 mL of each one. Then, at a rate of 1 mL min—?, 15 mL
of material was uploaded. After percolating the entire sample, 3 mL of MeOH:H,0O was
used to rinse the cartridges (80:20). With 10 mL of ACN, the substances retained in the
solid phase were eluted. Using nitrogen, the eluate was evaporated until dry. The final
volume was 1 mL after being reconstituted with ACN, and the final extract produced a 10:1
pre-concentration [31].

2.5. Instrumental Evaluation

To determine the concentrations of the BPs, HPLC (Agilent, 1100 series, Agilent
Technologies Inc., Santa Clara, CA, USA) and a mass spectrophotometer (API 2000, Applied
Biosystems, Foster City, CA, USA) were used, followed by an analytical column connected
to a Javelin precolumn to perform the CL separation. An injection volume of 10 uL and
methanol and water (0.3 mL min~!) as mobile phases were used [13].

2.6. QA and QC (Quality Assurance and Quality Control)
The BP recoveries in the spiked blanks (n = 4) are shown in Table 2.

Table 2. BP recoveries in spiked blanks.

Compounds Mean
n=4
D-BPA-1 754 +1.44
D-BPA-2 256 £1.32
D-BPA-3 453+ 1.7
D-BPA-4 325 +£5.14

The calculated LOQs for BPA, D-BPA-1, and D-BPA-2 were 0.40 ng L, and for
D-BPA-3 and D-BPA-4, they were 0.9 ng L~! and 1.5 ng L™, respectively. To check the
sensor sensitivity drift, a halfway calibration standard was injected after every 20 sam-
ples. In order to confirm the BP carryover between the samples under examination, pure
methanol was added at regular intervals. The calibration of the instruments was checked
using daily injections of 10 calibration standards at concentrations ranging from 0.01 to
250 ng mL~!, and the linearity of the calibration curve (r) was more than 0.99 for each
component objective. The amounts of BP in the sludge were given as dry weight, and the
blank and matrix-enriched samples were consistently examined to validate the analytical
approach [13].

Statistical analysis was performed with the data obtained from the concentrations,
calculating the mean and the median while assuming as zero the value of the concentrations
that were below the LOQ, and for the statistical analysis, a value equivalent to half of each
was assigned.
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2.7. Removal Extension Calculation

To calculate the average of the removal efficiencies of the BP in the tributaries of the
wastewater plant, the equation shown below was used, which uses the average concentra-
tion of the BPs in the influents and tributaries of the plants studied [21,38]:

Extent of removal (0/0) = [(Cinﬂuent - Cefﬂuent)(ng/L)]/[Cinﬂuent(ng/L)] x 100 (1)

3. Results
3.1. BP Concentrations in WWTPs

The concentrations of the BPs in the different water flows of the different sampling
points in Colombia are shown in Table 2. For the tributaries of the different influents,
the contents of the bisphenols of interest were verified in each sample, obtaining average
values of the sum of the concentration of the five bisphenols studied (Table 3). After going
through the preparation of the sample and the established procedure, the concentrations of
the bisphenols in the predetermined affluents were analyzed and compared to see if the
process used was sufficient to remove these compounds. In the polypropylene production
plant, data were obtained at two sampling points: the extruder and the desorber. In
the first, the difference between the concentrations of the influents and the effluents was
analyzed, obtaining the lowest value for D-BPA-4, which indicates that this was the one
that was removed in the greatest proportion compared with the others at this sampling
point. The average difference value for bisphenol A was 274.29 ng L~!; for D-BPA-1,
it was 117.88 ng L~1; for D-BPA-2, it was 59.76 ng L~!; for D-BPA-3, a difference of
67.06 ng L1 was obtained; and for D-BPA-4, it was 53.82 ng L~1. Unlike the above, in the
desorber, the most removed molecule was D-BPA-2, with an average difference between
the concentrations of the influents and effluents of 49.69 ng L™, followed by D-BPA-4 with
a difference of 72.88 ng L. Meanwhile, for D-BPA-1, the difference was 74.71 ng L1,
and the difference in the highest concentrations were those of BPA and D-BPA-3, with
values of 307.94 and 167.69 ng L1, respectively. In the case of PET, the values were
only obtained at one sampling point where, as in the PP extruder, the highest substance
removed was D-BPA-4 with a difference of 31.51 ng L}, followed by D-BPA-3 with
133.71 ng L~! and already having values for BPA, D-BPA-1, and D-BPA-2 of 1623.94 ng L™},
279.88 ng L1, and 209.82 ng L™, respectively. These data suggest that a large percentage
of the bisphenols used at some stage of the polypropylene and PET processes is not
completely removed. Although these concentrations can be considered low due to the large
volumes of water discharged into bodies of water on a constant basis, they can generate a
fairly large environmental impact, in addition to affecting the health of the workers and the
inhabitants surrounding the plants and bodies of water.

When analyzing the profiles of the concentrations of the different BPs in the different
points studied in the polypropylene and PET processes presented in Figure 1, it was
observed that the difference in the total concentration of phenols in the influents and
effluents was high, with values of 572.82 ng L~ for the PP extruder, 672.91 ng L~! for the
PP desorber, and 2278.86 ng L~! in the PET process, indicating that in the three points
studied, only a very small amount of bisphenols was removed, and the amount of BPA in
the effluents was very high, revealing the few controls that existed for this substance despite
being regulated by different control and protection entities. Although no concentration
limit has been established for bisphenol analogs, their harmful effects on human health
have been studied. The presence of these compounds in bodies of water can affect the
surrounding population and the ecosystem where it is being discharged.
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Table 3. BP concentrations in influents and effluents.

Influents Effluents
Sampling Point ~ Parameters BPA D-BPA-1 D-BPA-2 D-BPA-3 D-BPA-4 YBPs BPA D-BPA-1 D-BPA-2 D-BPA-3 D-BPA-4 XBPs
(n=16)
Mean 389.88 159.00 85.94 99.47 67.82 802.12 115.59 41.12 26.18 32.41 14.00 229.29
PP Extruder Median 386 163 86 93 43 797 112 39 25 34 14 227
Range 312-485 109-198 68-100 57-165 4-465 689-1202 104-148 32-57 16-40 18-43 430-40 202-249
DR 100 100 100 100 100 100 100 100 100 100 100 100
(n=16)
Mean 448.35 153.71 86.00 213.35 109.71 1011.12 140.41 79.00 36.31 45.66 36.82 338.21
Desorber PP Median 444 153 89 206 105 1002 142 81 35 421 33.9 354.5
Range 402-499 112-197 49-124 189-263 76-142 923-1121 99-176 34-114 11.2-63.4 31.2-74.3 10.5-81.3 236.4-418.3
DR 100 100 100 100 100 100 100 100 100 100 100 100
(n=16)
Mean 1949.00 534.82 262.82 180.47 73.79 3000.91 325.06 254.94 53.00 46.76 42.29 722.05
PET Production Median 1254 536 265 169 75 2227 344 256 52 47 31 725.4
Range 1025-12,478 485-575 203-296 108-478 45-96 2014-13,514 210-391 198-301 45-59 40-52 20-142.5 592-845.5
DR 100 100 100 100 100 100 100 100 100 100 100 100
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Figure 1. BP concentration profiles: (a) influents and (b) effluents.

3.2. WWTP Removal Efficiency

Figure 2 shows the removal efficiencies of each bisphenol at the different points studied,
which did not reach 60% removal, indicating that a high number of these molecules left
the different bodies of water. In the PP extruder, the removal percentages ranged between
26.64 and 34.43%, the lower value being for D-BPA-1 and the higher for D-BPA-3. In the PP
desorber, the values ranged between 21.62 and 52.06% for the removal of the compounds,
where the compound with the highest removal efficiency was D-BPA-1. The widest range
was obtained in the percentages of the removal efficiencies, ranging from 20.34 to 59.16%
and with the substance mostly removed being D-BPA-4.

60

50

40 4

304 1 [ I —

20 1

PP Extruder PP Desorber PET Production

BPA D-BPA-1 D-BPA-2
D-BPA-3 D-BPA-4 2BPs

Figure 2. Percentages of BP removal.

In the case of the removal efficiency of the total concentration of bisphenols, they did
not reach 40%, demonstrating the inefficiency of these processes for the removal of emerg-
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ing contaminants such as bisphenols. These low percentages of efficiency are warning signs
that it is necessary to implement processes that allow the identification, quantification, and
removal of bisphenols in polymer production processes at an industrial level. The percent-
ages obtained in the removal extension were not far from those obtained by other authors,
which varied from 9% to percentages greater than 97% in the different bisphenols [39-41].
The increase or decrease in the extent of removal depends on the treatment used for the
wastewater and the ease of separating the molecules during these processes.

4. Conclusions

With this study, we showed for the first time the quantification of bisphenols in indus-
trial wastewater in the production of PP and PET in Colombia, where high concentrations
were obtained in the effluents. The presence of these analogous bisphenols in the process
wastewater when it was determined that these compounds were not used in the process
indicates that they can be formed from other molecules used in the synthesis of the resins,
which should be evaluated to implement actions that mitigate the formation of bisphenols.
Studies focused on the identification and quantification of bisphenols in industrial waste
are of the utmost importance for the implementation of measures to ensure both the process
and the health of industrial workers and inhabitants who are affected by these substances,
and by their ignorance, they cannot take the necessary measures for their protection.
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